【題目】如圖所示,在四棱錐中,是正三角形,四邊形為直角梯形,點為中點,且,,,,.
(1)求證:平面平面;
(2)求二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】將向量=(, ), =(, ),…=(,)組成的系列稱為向量列{},并定義向量列{}的前項和.如果一個向量列從第二項起,每一項與前一項的差都等于同一個向量,那么稱這樣的向量列為等差向量列。若向量列{}是等差向量列,那么下述四個向量中,與一定平行的向量是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某烘焙店加工一個成本為60元的蛋糕,然后以每個120元的價格出售,如果當天賣不完,剩下的這種蛋糕作餐廚垃圾處理.
(1)若烘焙店一天加工16個這種蛋糕,求當天的利潤(單位:元)關于當天需求量(單位:個,)的函數(shù)解析式;
(2)為了解該種蛋糕的市場需求情況與性別是否有關,隨機統(tǒng)計了100人的購買情況,得如下列聯(lián)表:
男 | 女 | 合計 | |
購買 | 15 | 35 | 50 |
不購買 | 6 | 44 | 50 |
合計 | 21 | 79 | 100 |
問:能否有的把握認為是否購買蛋糕與性別有關?
附:
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E為PB的中點.
(1)求證:AE//平面PDC;
(2)若BC=CD=PD,求直線AC與平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)根據(jù)不同取值,討論函數(shù)的奇偶性;
(2)若,對于任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)若已知,. 設函數(shù),,存在、,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列敘述正確的是( )
A.命題“p且q”為真,則恰有一個為真命題
B.命題“已知,則“”是“”的充分不必要條件”
C.命題都有,則,使得
D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓錐的底面半徑,高,點是底面直徑所對弧的中點,點是母線的中點.
(1)求圓錐的側(cè)面積和體積;
(2)求異面直線與所成角的大小.(結(jié)果用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級有男生220人,學籍編號為1,2,…,220;女生380人,學籍編號為221,222,…,600.為了解學生學習的心理狀態(tài),按學籍編號采用系統(tǒng)抽樣的方法從這600名學生中抽取10人進行問卷調(diào)查(第一組采用簡單隨機抽樣,抽到的號碼為10),再從這10名學生中隨機抽取3人進行座談,則這3人中既有男生又有女生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),.
(1)設函數(shù),若對任意的,都有,求實數(shù)的取值范圍;
(2)設,方程在區(qū)間上有實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com