如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形, 中點(diǎn).

(Ⅰ)證明:平面
(Ⅱ)求異面直線BS與AC所成角的大。

(Ⅰ)根據(jù),中點(diǎn)得到,
連OA,求得得到,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/7/fnbi7.png" style="vertical-align:middle;" />是平面ABC內(nèi)的兩條相交直線,所以平面.
(Ⅱ)

解析試題分析:(Ⅰ)證明:因?yàn)閭?cè)面與側(cè)面均為等邊三角形,所以
中點(diǎn),所以
連OA,設(shè)AB=2,由易求得
所以,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/7/fnbi7.png" style="vertical-align:middle;" />是平面ABC內(nèi)的兩條相交直線,所以平面.
(Ⅱ)分別取AB、SC、OC的中點(diǎn)N、M、H,連
MN、OM、ON、HN、HM,由三角形中位線定理


所以O(shè)M、ON所成角即為異面直線BS與AC所成角
設(shè)AB=2,易求得


所以異面直線BS與AC所成角的大小為
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。利用向量則能簡(jiǎn)化證明過(guò)程,對(duì)計(jì)算能力要求高。解答立體幾何問(wèn)題,另一個(gè)重要思想是“轉(zhuǎn)化與化歸思想”,即注意將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在多面體中,四邊形是正方形,,,,二面角是直二面角

(1)求證:平面
(2)求證:平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=,D為AA1中點(diǎn),BD與AB1交于點(diǎn)O,CO丄側(cè)面ABB1A1.

(Ⅰ)證明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知菱形所在平面與直角梯形所在平面互相垂直,點(diǎn),分別是線段,的中點(diǎn).

(I)求證:平面 平面;
(Ⅱ)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,正方形ABCD的邊長(zhǎng)為

(1)求證:平面ABCD丄平面ADE;
(2)求四面體BADE的體積;
(3)試判斷直線OB是否與平面CDE垂直,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正方體中,面中心為

(1)求證:;
(2)求異面直線所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在Rt中, ,D、E分別是上的點(diǎn),且.將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面;
(Ⅱ)若,求與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

長(zhǎng)方體中,底面是正方形,,上的一點(diǎn).

⑴求異面直線所成的角;
⑵若平面,求三棱錐的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三棱錐S—ABC的底面是正三角形,A點(diǎn)在側(cè)面SBC上的射影H是△SBC的垂心.

(1)求證:BC⊥SA
(2)若S在底面ABC內(nèi)的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案