函數(shù)y=x2與函數(shù)y=xlgx在區(qū)間(0,+∞)上增長較快的一個是
 
考點:對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的增長差異
專題:常規(guī)題型,函數(shù)的性質(zhì)及應(yīng)用
分析:在區(qū)間(0,+∞)上,指數(shù)函數(shù)增長快于冪函數(shù),冪函數(shù)快于對數(shù)函數(shù).
解答:解:冪函數(shù)的增長速度要比對數(shù)函數(shù)快,
故答案為:y=x2
點評:考查了指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù)的增長差異,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若M(2,3),N(4,-5),直線l過P(1,2),且點M,N到l的距離相等,則直線l的方程為( 。
A、4x+y-6=0
B、x+4y-6=0
C、3x+2y-7=0或4x+y-6=0
D、2x+3y-7=0或x+4y-6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1-t,2t-1,0),
b
=(2,t,t),則|
a
-
b
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
.
z
是復(fù)數(shù)z的共軛復(fù)數(shù),z+
.
z
+z•
.
z
=0,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的軌跡是(  )
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面斜坐標系xoy中∠xoy=45°,點P的斜坐標定義為:“若
OP
=x0
e1
+y0
e2
(其中
e1
,
e2
分別為與斜坐標系的x軸,y軸同方向的單位向量),則點P的坐標為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0),且動點M(x,y)滿足|
MF
1
|=|
MF
2
|
,則點M在斜坐標系中的軌跡方程為( 。
A、x-
2
y=0
B、x+
2
y=0
C、
2
x-y=0
D、
2
x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在復(fù)習(xí)指數(shù)函數(shù)的圖象時發(fā)現(xiàn):在y軸左邊,y=3x與y=2x的圖象均以x軸負半軸為漸近線,當x=0時,兩圖象交于點(0,1).這說明在y軸的左邊y=3x與y=2x的圖象從左到右開始時幾乎一樣,后來y=2x的圖象變化加快使得y=2x與y=3x的圖象逐漸遠離,而當x經(jīng)過某一值x0以后 y=3x的圖象變化加快使得y=2x與y=3x的圖象又逐漸接近,直到x=0時兩圖象交于點(0,1).那么x0=( 。
A、1n(1og32)
B、1og
2
3
(1og23)
C、1og3(1og23)-1og2(1og23)
D、-1og23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,O為坐標原點,直線l:x-ky+1=0與圓C:x2+y2=4相交于A,B兩點,
OM
=
OA
+
OB
.若點M在圓C上,則實數(shù)k=(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象是如圖所示的折線段OAB,其中A(1,2),B(3,0),那么函數(shù)y=xf(x)的單調(diào)增區(qū)間為( 。
A、(0,1)
B、(0,
3
2
C、(1,
3
2
D、(
3
2
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(x+1,2),
n
=(3,2y-1),若
m
n
,則8x+16y的最小值為(  )
A、
2
B、4
C、2
2
D、4
2

查看答案和解析>>

同步練習(xí)冊答案