在平面斜坐標系xoy中∠xoy=45°,點P的斜坐標定義為:“若
OP
=x0
e1
+y0
e2
(其中
e1
,
e2
分別為與斜坐標系的x軸,y軸同方向的單位向量),則點P的坐標為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0),且動點M(x,y)滿足|
MF
1
|=|
MF
2
|
,則點M在斜坐標系中的軌跡方程為( 。
A、x-
2
y=0
B、x+
2
y=0
C、
2
x-y=0
D、
2
x+y=0
考點:軌跡方程
專題:計算題,直線與圓
分析:欲求點M在斜坐標系中的軌跡方程,設(shè)P(x,y),只須求出其坐標x,y之間的關(guān)系即可,根據(jù)|
MF
1
|=|
MF
2
|
,建立等式關(guān)系,解之即可求出點M的軌跡方程.
解答:解:設(shè)M(x,y),∵F1(-1,0),F(xiàn)2(1,0),
∴由定義知,
MF1
=-[(x+1)
e1
+y
e2
],
MF2
=-[(x-1)
e1
+y
e2
],
|
MF
1
|=|
MF
2
|
,得:|(x+1)
e1
+y
e2
|=|(x-1)
e1
+y
e2
|,
(x+1)2+y2+2(x+1)y×
2
2
=
(x-1)2+y2+2(x-1)y×
2
2
,
整理得:
2
x+y=0.
故選D.
點評:本題是新信息題,讀懂信息,斜坐標系是一個兩坐標軸夾角為45°的坐標系,這是區(qū)別于以前學(xué)習(xí)過的坐標系的地方,本小題主要考查向量的模、平面向量的基本定理及其意義、軌跡方程等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面幾組對象可以構(gòu)成集合的是( 。
A、視力較差的同學(xué)
B、2013年的中國富豪
C、充分接近2的實數(shù)的全體
D、大于-2小于2的所有非負奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x+6y+2=0的圓心坐標與半徑分別是( 。
A、(-1,3),r=2
2
B、(1,-3),r=2
2
C、(1,-3),r=4
2
D、(1,-3),r=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等腰梯形ABCD中,E,F(xiàn)分別是底邊AB,CD的中點,把四邊形AEFD沿直線EF折起后所在的平面記為α,P∈α,設(shè)PB,PC與α所成的角分別為θ1,θ2(θ1,θ2均不等于零).若θ12,則點P的軌跡為(  )
A、直線B、圓C、橢圓D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B為平面內(nèi)兩個定點,過該平面內(nèi)動點m作直線AB的垂線,垂足為N.若
MN
2
AN
NB
,其中λ為常數(shù),則動點m的軌跡不可能是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2與函數(shù)y=xlgx在區(qū)間(0,+∞)上增長較快的一個是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c均為正實數(shù),求證:
1
a
+
1
b
+
1
c
1
ab
+
1
bc
+
1
ac
2
b+c
+
2
c+a
+
2
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,D是BC的中點,AD=m,BC=n,則
AB
AC
等于(  )
A、m2-
1
4
n2
B、m2+
1
4
n2
C、
1
4
m2+n2
D、
1
4
m2-n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,
2
),若S1,S2,S3分別表示三棱錐D-ABC在xOy,yOz,zOx坐標平面上的正投影圖形的面積,則( 。
A、S1=S2=S3
B、S2=S1且S2≠S3
C、S3=S1且S3≠S2
D、S3=S2且S3≠S1

查看答案和解析>>

同步練習(xí)冊答案