某學生在復習指數(shù)函數(shù)的圖象時發(fā)現(xiàn):在y軸左邊,y=3x與y=2x的圖象均以x軸負半軸為漸近線,當x=0時,兩圖象交于點(0,1).這說明在y軸的左邊y=3x與y=2x的圖象從左到右開始時幾乎一樣,后來y=2x的圖象變化加快使得y=2x與y=3x的圖象逐漸遠離,而當x經(jīng)過某一值x0以后 y=3x的圖象變化加快使得y=2x與y=3x的圖象又逐漸接近,直到x=0時兩圖象交于點(0,1).那么x0=(  )
A、1n(1og32)
B、1og
2
3
(1og23)
C、1og3(1og23)-1og2(1og23)
D、-1og23
考點:導數(shù)的幾何意義
專題:計算題,導數(shù)的概念及應用
分析:由題意,2x和3x在x0處的導數(shù)相同,即可得出結(jié)論.
解答:解:由題意,2x和3x在x0處的導數(shù)相同,∴2x0ln2=3x0ln3
∴x0=1og
2
3
(1og23)
,
故選:B.
點評:本題考查導數(shù)的幾何意義,考查學生的計算能力,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

圓C:x2+y2=4上的點到點(3,4)的最小距離為( 。
A、9B、7C、5D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

u
=(2,2,-1)是平面α的法向量,
a
=(-3,4,2)是直線l的方向向量,則直線l與α的位置關(guān)系是( 。
A、l∥αB、l⊥α
C、l?αD、l?α或l∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線C1的極坐標方程為ρcos2θ=sinθ,曲線C2的參數(shù)方程為
x=3-t
y=1-t
(t為參數(shù)),以極點為原點,極軸為x軸正半軸建立平面直角坐標系,則曲線C1上的點與曲線C2上的點最近的距離為(  )
A、2
B、
2
C、
3
2
4
D、
7
2
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x2與函數(shù)y=xlgx在區(qū)間(0,+∞)上增長較快的一個是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,設直線l:kx-y+1=0與圓C:x2+y2=4相交于A、B兩點,以OA、OB為鄰邊作平行四邊形OAMB,若點M在圓C上,則實數(shù)k等于( 。
A、1B、2C、0D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A,B分別是x軸和y軸上的動點,若以AB為直徑的圓C與直線2x+y-4=0相切,則圓C面積的最小值為( 。
A、
4
5
π
B、
3
4
π
C、(6-2
5
)π
D、
5
4
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”,在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù),根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為(  )
A、3.50分鐘
B、3.75分鐘
C、4.00分鐘
D、4.25分鐘

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2+(b-1)x+1是定義在[a,2+a]上的偶函數(shù),則向量(b,a)在向量(b,a+b)方向上的投影為
 

查看答案和解析>>

同步練習冊答案