【題目】定義在R上的函數(shù)f(x)滿足,.

(1)求函數(shù)f(x)的解析式;

(2)求函數(shù)g(x)的單調(diào)區(qū)間;

(3)給出定義:若s,t,r滿足,則稱(chēng)st更接近于r,當(dāng)x≥1時(shí),試比較哪個(gè)更接近,并說(shuō)明理由.

【答案】(1).(2)答案不唯一,見(jiàn)解析;(3)當(dāng)時(shí),更靠近.理由見(jiàn)解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),利用賦值法,求出f1)=f1+22f0),得到f0)=1.然后求解f1),即可求出函數(shù)的解析式.

2)求出函數(shù)的導(dǎo)數(shù)gx)=ex-a(x-1),結(jié)合a≥0,a0,分求解函數(shù)的單調(diào)區(qū)間即可.

3)構(gòu)造,通過(guò)函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,結(jié)合當(dāng)1≤xe時(shí),當(dāng)1≤xe時(shí),推出|px||qx|,說(shuō)明ex1+a更靠近lnx.當(dāng)xe時(shí),通過(guò)作差,構(gòu)造新函數(shù),利用二次求導(dǎo),判斷函數(shù)的單調(diào)性,證明ex1+a更靠近lnx

(1),令x=1解得f(0)=1,

,令x=0,

.

(2),

,

①當(dāng)時(shí),總有,函數(shù)R上單調(diào)遞增;

②當(dāng)時(shí),由得函數(shù)上單調(diào)遞增,由得函數(shù)上單調(diào)遞減;

綜上,當(dāng)時(shí),總有,函數(shù)R上單調(diào)遞增;當(dāng)時(shí),由得函數(shù)上單調(diào)遞增,由得函數(shù)上單調(diào)遞減.

(3)

,

設(shè),,[1,+∞]上遞減,

所以當(dāng)1≤xe時(shí),;

當(dāng)x>e時(shí),<0,而

所以[1,+∞)上遞增,

[1,+∞)上遞增,.

①當(dāng)時(shí),,

[1,+∞)上遞減,

更靠近;

②當(dāng)時(shí),

遞減,

更靠近

綜上所述,當(dāng)時(shí),更靠近.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)汽車(chē)“行車(chē)數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計(jì)里程指汽車(chē)從出廠開(kāi)始累計(jì)行駛的路程,累計(jì)耗電量指汽車(chē)從出廠開(kāi)始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對(duì)該車(chē)在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某高校學(xué)生中午午休時(shí)間玩手機(jī)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均午休時(shí)間的頻率分布直方圖,將日均午休時(shí)玩手機(jī)不低于40分鐘的學(xué)生稱(chēng)為手機(jī)控”.

1)求列聯(lián)表中未知量的值;

非手機(jī)控

手機(jī)控

合計(jì)

10

55

合計(jì)

2)能否有的把握認(rèn)為手機(jī)控與性別有關(guān)?

.

0.05

0.10

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】環(huán)境指數(shù)是“宜居城市”評(píng)比的重要指標(biāo).根據(jù)以下環(huán)境指數(shù)的數(shù)據(jù),對(duì)名列前20名的“宜居城市”的環(huán)境指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示,現(xiàn)從環(huán)境指數(shù)在[4,5)和[7,8]內(nèi)的“宜居城市”中隨機(jī)抽取2個(gè)市進(jìn)行調(diào)研,則至少有1個(gè)市的環(huán)境指數(shù)在[7,8]的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌經(jīng)銷(xiāo)商在一廣場(chǎng)隨機(jī)采訪男性和女性用戶(hù)各50名,其中每天玩微信超過(guò)6小時(shí)的用戶(hù)列為微信控,否則稱(chēng)其為非微信控,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100

1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為微信控性別有關(guān)?

2)現(xiàn)從調(diào)查的女性用戶(hù)中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人是微信控的概率.

參考公式:,其中

參考數(shù)據(jù):

0.050

0.040

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系.己知直線的直角坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

1)設(shè)t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

2)已知:直線與曲線C交于A,B兩點(diǎn),設(shè),且,,依次成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有如下三個(gè)命題:

甲:相交直線l、m都在平面內(nèi),并且都不在平面內(nèi);

乙:直線l、m中至少有一條與平面相交;

丙:平面與平面相交.

當(dāng)甲成立時(shí)  

A. 乙是丙的充分而不必要條件

B. 乙是丙的必要而不充分條件

C. 乙是丙的充分且必要條件

D. 乙既不是丙的充分條件又不是丙的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.

文科生

理科生

合計(jì)

獲獎(jiǎng)

5

不獲獎(jiǎng)

合計(jì)

200

參考公式: (其中為樣本容量)

隨機(jī)變量的概率分布:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)求的值;

2)填寫(xiě)上方的列聯(lián)表,并判斷能否有超過(guò)的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案