【題目】下列有關(guān)命題的說(shuō)法正確的是(

A.為假命題,則為假命題

B.的必要不充分條件

C.命題,則的逆否命題為真命題

D.命題,的否定是

【答案】C

【解析】

的真值表可判斷A;由充分必要條件的定義和二次方程的解法,可判斷B;由命題和其逆否命題等價(jià)即可判斷C;由特稱命題的否定為全稱命題,可判斷D

A. 為假命題,則中至少有一個(gè)假命題,則可真可假,所以該選項(xiàng)是錯(cuò)誤的;

B. “的充分不必要條件,因?yàn)橛?/span>得到,所以該選項(xiàng)是錯(cuò)誤的;

C. 命題的逆否命題為真命題,因?yàn)樵}是真命題,而原命題的真假性和其逆否命題的真假是一致的,所以該選項(xiàng)是正確的;

D. 命題的否定應(yīng)該是,所以該選項(xiàng)是錯(cuò)誤的.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在平面四邊形ABCD中,ACBD的垂直平分線,垂足為E,AB中點(diǎn)為F,,,沿BD折起,使C位置,如圖(2.

1)求證:;

2)當(dāng)平面平面ABD時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為,以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.

(1)若直線與曲線有公共點(diǎn),求傾斜角的取值范圍;

(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,滿足:對(duì)于任意正整數(shù)n,當(dāng)n≥2時(shí),

(1)若,求的值;

(2)若,,且數(shù)列的各項(xiàng)均為正數(shù).

① 求數(shù)列的通項(xiàng)公式;

② 是否存在,且,使得為數(shù)列中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2D,E分別為AB,PB中點(diǎn),PD⊥平面ABC,PD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知橢圓的參數(shù)方程為為參數(shù)),直線的極坐標(biāo)方程與橢相交于兩點(diǎn).

1)寫出直線的普通方程與參數(shù)方程:

2)將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程,并求弦長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

其中c>0.那么f(x)的零點(diǎn)是________;若f(x)的值域是,則c的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), : (1)曲線的斜率為的切線方程為__________;

(2)設(shè),記在區(qū)間上的最大值為.當(dāng)最小時(shí),的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,四邊形為矩形,平面平面.

(1)證明:平面;

(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),平面與平面所成銳二面角為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案