【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點(diǎn),△PAD為等邊三角形,M是棱PC上的一點(diǎn),設(shè)(M與C不重合).
(1)求證:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角為150°,求k的值.
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
試題分析:(1)先證從而平面,進(jìn)而再由得到,可證;(2)連接交于,連接可得,從而,進(jìn)而求出的值;(3)連接,做交于,做于,連,則為二面角的平面角,進(jìn)而可求出的值.
試題解析:證明:(1)因?yàn)?/span>△PAD為等邊三角形,E為AD的中點(diǎn),所以PE⊥AD.
因?yàn)槠矫鍼AD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PE平面PAD,
所以PE⊥平面ABCD.
又CD平面ABCD,所以PE⊥CD.
由已知得CD⊥DA,PE∩AD=E,所以CD⊥平面PAD.
雙DP平面PAD,所以CD⊥DP.
解:(2)連接AC交BE于N,連接MN.
因?yàn)镻A∥平面BME,PA平面PAC,
平面PAC∩平面BME=MN,所以PA∥MN.
因?yàn)锳D∥BC,BC⊥DC,所以∠CBN=∠AEN=90°.
又CB=AE,∠CNB=∠ANE,所以△CNB≌△ANE.
所以CN=NA,則M為PC的中點(diǎn),k=1.
(3)依題意,若二面角M﹣BE﹣A的大小為150°,則二面角M﹣BE﹣C的大小為30°.
連接CE,過(guò)點(diǎn)M作MF∥PE交CE于F,過(guò)A(0,1,0)作FG⊥BE于G,連接MG.
因?yàn)镻E⊥平面ABCD,所以MF⊥平面ABCD.
又BE平面ABCD,所以MF⊥BE.
又MF∩FG=F,MF平面MFG,F(xiàn)G平面MFG,
所以BE⊥平面MFG,從而B(niǎo)E⊥MG.
則∠MGF為二面角M﹣BE﹣C的平面角,即∠MGF=30°.
在等邊△PAD中,.由于,所以.
又,所以.
在△MFG中,
解得k=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是
A. 在內(nèi)總存在與平面平行的線段
B. 平面平面
C. 三棱錐的體積為定值
D. 可能為直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了選拔參加自行車比賽的選手,對(duì)自行車運(yùn)動(dòng)員甲、乙兩人在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計(jì)甲、乙兩運(yùn)動(dòng)員的最大速度的平均數(shù)和方差,并判斷誰(shuí)參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】行了一次水平測(cè)試。用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績(jī),準(zhǔn)備進(jìn)行分析和研究。經(jīng)統(tǒng)計(jì)成績(jī)的分組及各組的頻數(shù)如下:,2;,3;,10;,15;,12;,8.
(Ⅰ)頻率分布表
分組 | 頻數(shù) | 頻率 |
2 | ||
3 | ||
10 | ||
15 | ||
12 | ||
8 | ||
合計(jì) | 50 |
頻率分布直方圖為
(Ⅰ)完成樣本的頻率分布表;畫出頻率分直方圖;
(Ⅱ)估計(jì)成績(jī)?cè)?/span>85分以下的學(xué)生比例;
(Ⅲ)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是實(shí)常數(shù),函數(shù).
(1)若曲線在處的切線過(guò)點(diǎn)A(0,﹣2),求實(shí)數(shù)a的值;
(2)若有兩個(gè)極值點(diǎn)(),
①求證:;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式x3f(x)<0的解集為( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,﹣1)∪(1,4)
C.(﹣∞,﹣4)∪(﹣1,0)
D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=1,曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)M(0,1),直線l與曲線C交于不同的兩點(diǎn)P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年世界海洋日暨全國(guó)海洋宣傳日主場(chǎng)活動(dòng)在海南三亞舉行,此次活動(dòng)主題為“珍惜海洋資源保護(hù)海洋生物多樣性”,旨在進(jìn)一步提高公眾對(duì)節(jié)約利用海洋資源.保護(hù)海洋生物多樣性的認(rèn)識(shí),為保護(hù)藍(lán)色家園做出貢獻(xiàn).聯(lián)合國(guó)于第63屆聯(lián)合國(guó)大會(huì)上將每年的6月8日確定為“世界海洋日”,為了響應(yīng)世界海洋日的活動(dòng),2019年12月北京某高校行政主管部門從該大學(xué)隨機(jī)抽取部分大學(xué)生進(jìn)行一次海洋知識(shí)測(cè)試,并根據(jù)被測(cè)驗(yàn)學(xué)生的成績(jī)(得分都在區(qū)間內(nèi))繪制成如圖所示的頻率分布直方圖.
若學(xué)生的得分成績(jī)不低于80分的認(rèn)為是“成績(jī)優(yōu)秀”現(xiàn)在從認(rèn)為“成績(jī)優(yōu)秀”的學(xué)生中根據(jù)原有分組按照分層抽樣的方法抽取10人進(jìn)行獎(jiǎng)勵(lì),最后再?gòu)倪@10人中隨機(jī)選取3人作為優(yōu)秀代表發(fā)言.
(1)求所抽取的3人不屬于同一組的概率;
(2)記這3人中,為測(cè)試成績(jī)?cè)?/span>內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com