【題目】已知函數(shù)f(x)=x2-ax-alnx(a∈R).

(1)若函數(shù)f(x)在x=1處取得極值,求a的值;

(2)在(1)的條件下,求證:f(x)≥--4x+.

【答案】(1) a=1.(2) 見(jiàn)解析.

【解析】試題分析:(1)根據(jù)極值的定義即導(dǎo)函數(shù)的變號(hào)零點(diǎn),求導(dǎo)使得f′(1)=0,解得a=1;并檢驗(yàn)a1時(shí)1是函數(shù)的變號(hào)零點(diǎn)即可(2)構(gòu)造函數(shù)g(x)f(x),研究這個(gè)函數(shù)的單調(diào)性,使得這個(gè)函數(shù)的最小值大于等于0即可.

解析:

(1)解 f′(x)=2x-a-,由題意可得f′(1)=0,解得a=1.經(jīng)檢驗(yàn),a=1時(shí)f(x)在x=1處取得極值,所以a=1.

(2)證明 由(1)知,f(x)=x2-x-lnx,

令g(x)=f(x)-

+3x-lnx-

由g′(x)=x2-3x+3--3(x-1)= (x>0),可知g(x)在(0,1)上是減函數(shù),

在(1,+∞)上是增函數(shù),所以g(x)≥g(1)=0,所以f(x)≥--4x+成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),若函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,其前項(xiàng)和為.

(1)若對(duì)任意的, , 組成公差為4的等差數(shù)列,且,求

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·雞西一模)在正方體ABCDA1B1C1D1中,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,M,N分別為ABBC中點(diǎn),點(diǎn)Q為平面ABCD內(nèi)一點(diǎn),線段D1QOP互相平分,則滿足的實(shí)數(shù)λ的值有(  )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABCA1B1C1的底面是邊長(zhǎng)為4的正三角形AA1⊥平面ABC,AA12,MA1B1的中點(diǎn)

(1)求證MCAB;

(2)在棱CC1上是否存在點(diǎn)P使得MC⊥平面ABP?若存在,確定點(diǎn)P的位置;若不存在說(shuō)明理由

(3)若點(diǎn)PCC1的中點(diǎn),求二面角BAPC的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3-kx,其中實(shí)數(shù)k為常數(shù).

(1)當(dāng)k=4時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若曲線y=f(x)與直線y=k只有一個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若有兩個(gè)零點(diǎn),則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

)當(dāng)時(shí),求函數(shù)處的切線方程;

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x2ex (x0)g(x)x2ln(xa)圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),a的取值范圍是(  )

A. () B. (,)

C. ( ) D. (, )

查看答案和解析>>

同步練習(xí)冊(cè)答案