【題目】已知函數(shù) .

)當(dāng)時(shí),求函數(shù)處的切線方程;

)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】;()當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,當(dāng)時(shí), 的單調(diào)遞增區(qū)間是, ,單調(diào)遞減區(qū)間是 ;(.

【解析】試題分析:()求當(dāng)a=2時(shí),函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程即可得到切線方程;()求出fx)的導(dǎo)數(shù),令f'x=0,得2x2-2x+a=0,對判別式討論,令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間;()函數(shù)fx)在(0,+∞)上有兩個(gè)極值點(diǎn),由()可得不等式fx1≥mx2恒成立即為即為,令求出導(dǎo)數(shù),判斷單調(diào)性,即可得到hx)的范圍,即可求得m的范圍.

試題解析:()因?yàn)楫?dāng)時(shí), ,所以.

因?yàn)?/span>,所以切線方程為.

)因?yàn)?/span>,令,即.

)當(dāng),即時(shí), ,函數(shù)上單調(diào)遞增;

)當(dāng),即時(shí),由,得,

,由,得;

,得;

此時(shí),函數(shù)上遞減,在上遞增;

,則,函數(shù)上遞減,在上遞增;

,則函數(shù)上遞減,在上遞增.

綜上,當(dāng)時(shí),函數(shù)的增區(qū)間為在,無減區(qū)間;

當(dāng)時(shí), 的單調(diào)遞增區(qū)間是;

單調(diào)遞減區(qū)間是;

當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

)由()可知,函數(shù)有兩個(gè)極值點(diǎn),則.

因?yàn)?/span>

所以.

因?yàn)?/span>,所以,

因?yàn)?/span> ,

所以.

設(shè),則.

因?yàn)?/span>,且,

上單調(diào)遞減,則,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若曲線的一條切線經(jīng)過點(diǎn),求這條切線的方程.

(2)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2

求實(shí)數(shù)a的取值范圍;

證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-ax-alnx(a∈R).

(1)若函數(shù)f(x)在x=1處取得極值,求a的值;

(2)在(1)的條件下,求證:f(x)≥--4x+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐PABCD中,ABAD,ADDCPA⊥底面ABCD, ,MPC的中點(diǎn),N點(diǎn)在AB上且.

(1)證明:MN∥平面PAD

(2)求直線MN與平面PCB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , , 平面.

(1)求證: 平面;

(2)若為線段的中點(diǎn),且過三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為: .

1)求, 的值;

2)設(shè),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍;

(2)設(shè),且,點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成, ,

(Ⅰ)證明:平面平面;

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

查看答案和解析>>

同步練習(xí)冊答案