【題目】如圖,已知平面平面平面,且位于之間.點(diǎn),,,.

1)求證:.

2)設(shè)ADCF不平行,且A,BC,D為定點(diǎn),間的距離為,間的距離為h.當(dāng)的值是多少時(shí),的面積最大?

【答案】1)證明見(jiàn)解析,(2

【解析】

1)根據(jù)面面平行的性質(zhì)定理可得,,即可證明結(jié)論;

2)由,根據(jù)平行線段的比例關(guān)系,可得,同理

求出,而為定值,只需求最大值,利用基本不等式,即可求解.

1)證明:∵,平面,

平面,∴,∴.

同理,,∴.

2)解:由(1)知,

.同理,.

.

由題意知,ADCF異面,只有,間變化位置,CFAD是常量,

ADCF所成角的正弦值,也是常量.

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)最大.

∴當(dāng),即,兩平面的中間時(shí),的面積最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

(1)若對(duì)任意的實(shí)數(shù),恒有,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求證:方程恒有兩解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】扎花燈是中國(guó)一門傳統(tǒng)手藝,逢年過(guò)節(jié)時(shí)常常在大街小巷看到各式各樣的美麗花燈,F(xiàn)有一個(gè)花燈,它外圍輪廓是由兩個(gè)形狀完全相同的拋物線繞著它們自身的對(duì)稱軸旋轉(zhuǎn)而來(lái)(如圖),花燈的下頂點(diǎn)為,上頂點(diǎn)為,米,在它的內(nèi)部放有一個(gè)半徑為米的球形燈泡,球心在軸,米。若球形燈泡的球心到四周輪廓上的點(diǎn)的最近距離是在下頂點(diǎn)處取到。建立適當(dāng)?shù)淖鴺?biāo)系可得拋物線方程為,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,設(shè)直線的極坐標(biāo)方程為.

(1)求曲線和直線的普通方程;

(2)設(shè)為曲線上任意一點(diǎn),求點(diǎn)到直線的距離的最值.

【答案】(1), ;(2)最大值為,最小值為

【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標(biāo)化普通方程化法即易得結(jié)論的普通方程為;直線的普通方程為.(2)求點(diǎn)到線距離問(wèn)題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設(shè), .即可得出最值

解析:(1)根據(jù)題意,由,得,

,得,

的普通方程為;

, ,

故直線的普通方程為.

(2)由于為曲線上任意一點(diǎn),設(shè),

由點(diǎn)到直線的距離公式得,點(diǎn)到直線的距離為

.

,

,即 ,

故點(diǎn)到直線的距離的最大值為,最小值為.

點(diǎn)睛:首先要熟悉參數(shù)方程和極坐標(biāo)方程化普通方程的方法,第一問(wèn)基本屬于送分題所以務(wù)必抓住,對(duì)于第二問(wèn)可以總結(jié)為一類題型,借助參數(shù)方程設(shè)點(diǎn)的方便轉(zhuǎn)化為三角函數(shù)最值問(wèn)題求解

型】解答
結(jié)束】
23

【題目】已知函數(shù).

(1)解關(guān)于的不等式;

(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為

(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸正方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象,當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】偶函數(shù)滿足,當(dāng)時(shí),,不等式上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(a∈R),若函數(shù)恰有5個(gè)不同的零點(diǎn),則的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擬用10萬(wàn)元投資甲、乙兩種商品.已知各投入萬(wàn)元,甲、乙兩種商品分別可獲得萬(wàn)元的利潤(rùn),利潤(rùn)曲線,,如圖所示.

(1)求函數(shù)的解析式;

(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

附:的觀測(cè)值

0.05

0.01

0.001

3.841

6.635

10.828

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)在犯錯(cuò)誤的概率不超過(guò)0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

查看答案和解析>>

同步練習(xí)冊(cè)答案