【題目】健身館某項目收費標準為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標準如下:

現(xiàn)隨機抽取了100為會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:

假設該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計1位會員至少消費兩次的概率

2)某會員消費4次,求這4次消費獲得的平均利潤;

3)假設每個會員每星期最多消費4次,以事件發(fā)生的頻率作為相應事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學期望

【答案】1222.53)見解析,

【解析】

1)根據(jù)頻數(shù)計算頻率,得出概率;

2)根據(jù)優(yōu)惠標準計算平均利潤;

3)求出各種情況對應的的值和概率,得出分布列,從而計算出數(shù)學期望.

解:(1)估計1位會員至少消費兩次的概率

2)第1次消費利潤;

2次消費利潤

3次消費利潤;

4次消費利潤;

4次消費獲得的平均利潤:

31次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;

由題意:

故分布列為:

0

期望為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調性;

2)當, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點的直線與橢圓交于兩點,延長交橢圓于點的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)的焦點到點的距離為.

1)求拋物線的方程;

2)過點作拋物線的兩條切線,切點分別為,點、分別在第一和第二象限內,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)試求函數(shù)零點的個數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于M,N兩點.

1)若點P的極坐標為(2π),求|PM||PN|的值;

2)求曲線C的內接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線,的交點分別為、異于原點),當斜率時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】移動支付(支付寶支付,微信支付等)開創(chuàng)了新的支付方式,使電子貨幣開始普及,為了了解習慣使用移動支付方式是否與年齡有關,對某地200人進行了問卷調查,得到數(shù)據(jù)如下:60歲以上的人群中,習慣使用移動支付的人數(shù)為30人;60歲及以下的人群中,不習慣使用移動支付的人數(shù)為40.已知在全部200人中,隨機抽取一人,抽到習慣使用移動支付的人的概率為0.6.

1)完成如下的列聯(lián)表,并判斷是否有的把握認為習慣使用移動支付與年齡有關,并說明理由.

習慣使用移動支付

不習慣使用移動支付

合計(人數(shù))

60歲以上

60歲及以下

合計(人數(shù))

200

2)在習慣使用移動支付的60歲以上的人群中,每月移動支付的金額如下表:

每月支付金額

300以上

人數(shù)

10

20

30

現(xiàn)采用分層抽樣的方法從中抽取9人,再從這9人中隨機抽取4人,記4人中每月移動支付金額超過3000元的人數(shù)為,求的分布列及數(shù)學期望.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案