【題目】如圖,菱形ABCD的邊長為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為(

A.3
B.2
C.6
D.9

【答案】D
【解析】解::以點(diǎn)A位坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,由于菱形ABCD的邊長為2,∠A=60°,M為DC的中點(diǎn),
故點(diǎn)A(0,0),則B(2,0),C(3, ),D(1, ),M(2, ).
設(shè)N(x,y),N為平行四邊形內(nèi)(包括邊界)一動(dòng)點(diǎn),對(duì)應(yīng)的平面區(qū)域即為平行四邊形ABCD及其內(nèi)部區(qū)域.
因?yàn)? =(2, ), =(x,y),則 =2x+ y,
結(jié)合圖象可得當(dāng)目標(biāo)函數(shù)z=2x+ y 過點(diǎn)C(3, )時(shí),z=2x+ y取得最大值為9,
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)a=0時(shí),關(guān)于x的方程f(x)=m(m∈R)有2個(gè)不同的實(shí)數(shù)根x1 , x2 , 證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點(diǎn)P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時(shí)二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直二面角中,四邊形ABCD是邊長為2的正方形,,FCE上的點(diǎn),且平面ACE

求證:平面BCE;

求二面角的余弦值;

求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

若函數(shù)有唯一零點(diǎn),則以下四個(gè)命題中正確的是______(填寫正確序號(hào))

①. ②.函數(shù)處的切線與直線平行

③.函數(shù)上的最大值為

④.函數(shù)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求過點(diǎn)且與兩坐標(biāo)軸截距相等的直線的方程;

(2)已知正方形的中心為直線和直線的交點(diǎn),且邊所在直線方程為,求邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)證明:函數(shù)f(x)=(x﹣a)2lnx,a∈R的圖象恒經(jīng)過一個(gè)定點(diǎn);
(2)若函數(shù)h(x)= f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案