【題目】(1)求過點(diǎn)且與兩坐標(biāo)軸截距相等的直線的方程;

(2)已知正方形的中心為直線和直線的交點(diǎn),且邊所在直線方程為,求邊所在直線的方程.

【答案】(1) (2)

【解析】

(1)根據(jù)截距相等,討論截距是否為0,分別設(shè)出直線方程,即可得解。

(2)先求得正方形中心的坐標(biāo),利用對(duì)邊平行可設(shè)出直線CD的方程,再利用點(diǎn)到直線距離公式即可求得CD的直線方程。

(1)當(dāng)截距為0時(shí),設(shè)直線方程為 ,代入點(diǎn)可得

所以直線方程為,

當(dāng)截距不為0時(shí),設(shè)直線方程為

代入點(diǎn)可得

所以直線方程為,

綜上所述,直線的方程為

(2)由,得

即中心坐標(biāo)為

∵正方形邊所在直線方程為

∴可設(shè)正方形邊所在直線方程為

∵正方形中心到各邊距離相等,

(舍)

邊所在直線方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個(gè)不同的零點(diǎn),記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠BAD=60°,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則 的最大值為(

A.3
B.2
C.6
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對(duì)霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對(duì)于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為

(1)當(dāng)直線過點(diǎn)時(shí),求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知橢圓的離心率為橢圓C長(zhǎng)軸長(zhǎng)為4

1求橢圓C的方程;

2已知直線與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=4,AB=4 ,∠CDA=120°,點(diǎn)N在線段PB上,且PN=2.

(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)若函數(shù)f(x)=|2x﹣1|+|2x﹣3|的最小值,并求取的最小值時(shí)x的取值范圍;
(2)若g(x)= 的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=blnx,g(x)=ax2﹣x(a∈R).
(1)若曲線f(x)與g(x)在公共點(diǎn)A(1,0)處有相同的切線,求實(shí)數(shù)a、b的值;
(2)在(1)的條件下,證明f(x)≤g(x)在(0,+∞)上恒成立;
(3)若a=1,b>2e,求方程f(x)﹣g(x)=x在區(qū)間(1,eb)內(nèi)實(shí)根的個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案