【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個(gè)數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)
(2)用樣本估計(jì)總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價(jià)為元.
方案:分類賣出,分類后的水果售價(jià)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(jià)(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再從抽取的個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
【答案】(1);(2)第一種方案;(3)詳見解析
【解析】
(1)計(jì)算出從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的概率;則可利用二項(xiàng)分布的概率公式求得所求概率;(2)計(jì)算出方案單價(jià)的數(shù)學(xué)期望,與方案的單價(jià)比較,選擇單價(jià)較低的方案;(3)根據(jù)分層抽樣原則確定抽取的個(gè)水果中,精品果個(gè),非精品果個(gè);則服從超幾何分布,利用超幾何分布的概率計(jì)算公式可得到每個(gè)取值對(duì)應(yīng)的概率,從而可得分布列;再利用數(shù)學(xué)期望的計(jì)算公式求得結(jié)果.
(1)設(shè)從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的事件為,則
現(xiàn)有放回地隨機(jī)抽取個(gè),設(shè)抽到禮品果的個(gè)數(shù)為,則
恰好抽到個(gè)禮品果的概率為:
(2)設(shè)方案的單價(jià)為,則單價(jià)的期望值為:
從采購商的角度考慮,應(yīng)該采用第一種方案
(3)用分層抽樣的方法從個(gè)水果中抽取個(gè),則其中精品果個(gè),非精品果個(gè)
現(xiàn)從中抽取個(gè),則精品果的數(shù)量服從超幾何分布,所有可能的取值為:
則;;;
的分布列如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年“雙十一”當(dāng)天,甲、乙兩大電商進(jìn)行了打折促銷活動(dòng),某公司分別調(diào)查了當(dāng)天在甲、乙電商購物的1000名消費(fèi)者的消費(fèi)金額,得到了消費(fèi)金額的頻數(shù)分布表如下:
甲電商:
消費(fèi)金額(單位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
頻數(shù) | 50 | 200 | 350 | 300 | 100 |
乙電商:
消費(fèi)金額(單位:千元) | [0,1) | [1,2) | [2,3) | [3,4) | [4,5] |
頻數(shù) | 250 | 300 | 150 | 100 | 200 |
(Ⅰ)根據(jù)頻數(shù)分布表,完成下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費(fèi)者在甲、乙電商消費(fèi)金額的中位數(shù)的大小以及方差的大。ㄆ渲蟹讲畲笮〗o出判斷即可,不必說明理由);
(Ⅱ)(ⅰ)根據(jù)上述數(shù)據(jù),估計(jì)“雙十一”當(dāng)天在甲電商購物的大量的消費(fèi)者中,消費(fèi)金額小于3千元的概率;
(ⅱ)現(xiàn)從“雙十一”當(dāng)天在甲電商購物的大量的消費(fèi)者中任意調(diào)查5位,記消費(fèi)金額小于3千元的人數(shù)為X,試求出X的期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且(為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與、無關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的300名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形, 平面, ,以的中點(diǎn)為球心, 為直徑的球面交于點(diǎn),交于點(diǎn).
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題
(1)若一條直線與兩條直線都相交,那么這三條直線共面;
(2)若三條直線兩兩平行,那么這三條直線共面;
(3)若直線與直線異面,直線與直線異面,那么直線與直線異面;
(4)若直線與直線垂直,直線與直線垂直,那么直線與直線平行;
其中正確的命題個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與軸相切于點(diǎn),與軸正半軸交于兩點(diǎn),(在的上方),且.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作任一條直線與圓:相交于,兩點(diǎn).
①求證:為定值,并求出這個(gè)定值;
②求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com