【題目】某創(chuàng)業(yè)團隊擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場預測, 產(chǎn)品的利潤與投資額成正比(如圖1),產(chǎn)品的利潤與投資額的算術平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)
(1)分別將兩種產(chǎn)品的利潤、表示為投資額的函數(shù);
(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問:當產(chǎn)品的投資額為多少萬元時,生產(chǎn)兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?
【答案】(1), ;(2)6.25, 4.0625.
【解析】試題分析:(1)由產(chǎn)品的利潤與投資額成正比, 產(chǎn)品的利潤與投資額的算術平方根成正比,結合函數(shù)圖象,我們可以利用待定系數(shù)法來求兩種產(chǎn)品的收益與投資的函數(shù)關系;(2)由(1)的結論,我們設產(chǎn)品的投資額為萬元,則產(chǎn)品的投資額為萬元,這時可以構造出一個關于收益的函數(shù),然后利用求函數(shù)最大值的方法進行求解.
試題解析:(1) ,
.
(2) 設產(chǎn)品的投資額為萬元,則產(chǎn)品的投資額為萬元,
創(chuàng)業(yè)團隊獲得的利潤為萬元,
則 ,
令, ,即,
當,即時, 取得最大值4.0625.
答:當產(chǎn)品的投資額為6.25萬元時,創(chuàng)業(yè)團隊獲得的最大利潤為4.0625 萬元.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2+2ax﹣a﹣1,x∈[0,2],a為常數(shù).
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整數(shù)m,使得g(a)﹣m≤0對于任意a∈R均成立,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如表對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求廣告費支出x與銷售額y回歸直線方程 =bx+a(a,b∈R);
已知b= ,
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線與的交點到軸的距離為,過點作軸的垂線, 為上異于點的一點,以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個交點為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓上的動點,過點作軸的垂線段, 為垂足,點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若兩點分別為橢圓的左右頂點, 為橢圓的左焦點,直線與橢圓交于點,直線的斜率分別為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com