【題目】某次知識(shí)競(jìng)賽規(guī)則如下:在主辦方預(yù)設(shè)的7個(gè)問題中,選手若能連續(xù)正確回答出兩個(gè)問題,即停止答題,晉級(jí)下一輪.假設(shè)某選手正確回答每個(gè)問題的概率都是0.7,且每個(gè)問題的回答結(jié)果相互獨(dú)立,則該選手恰好回答了5個(gè)問題就晉級(jí)下一輪的概率等于( )
A.0.07497B.0.92503C.0.1323D.0.6174
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若,b=f(log24.2),c=f(20.7),則a,b,c的大小關(guān)系為( )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),若且中點(diǎn)的縱坐標(biāo)為3.
(Ⅰ)求的值;
(Ⅱ)過點(diǎn)的直線交拋物線于不同兩點(diǎn),分別過點(diǎn)、點(diǎn)分別作拋物線的切線,所得的兩條切線相交于點(diǎn).求的面積的最小值及此時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為矩形,點(diǎn)A、E、B、F共面,和均為等腰直角三角形,且若平面⊥平面
(Ⅰ)證明:平面平面ADF
(Ⅱ)問在線段EC上是否存在一點(diǎn)G,使得BG∥平面若存在,求出此時(shí)三棱錐G一ABE與三棱錐的體積之比,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)數(shù)k,b,使得函數(shù)和對(duì)其定義域上的任意實(shí)數(shù)x同時(shí)滿足:且,則稱直線:為函數(shù)和的“隔離直線”.已知,(其中e為自然對(duì)數(shù)的底數(shù)).試問:
(1)函數(shù)和的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;
(2)函數(shù)和是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上的點(diǎn)到焦點(diǎn)的距離為.
(1)求的值;
(2)如上圖,已知?jiǎng)泳段(在的右邊)在直線上,且,現(xiàn)過作的切線,取左邊的切點(diǎn),過作的切線,取右邊的切點(diǎn)為,當(dāng),求點(diǎn)的橫坐標(biāo)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對(duì)任意正整數(shù)n,均有.證明:若存在整數(shù)r、s(r>s≥2)使得,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個(gè)頂點(diǎn)坐標(biāo)是,,的周長(zhǎng)為,是坐標(biāo)原點(diǎn),點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程;
(2)若互相平行的兩條直線,分別過定點(diǎn)和,且直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),若四邊形的面積為,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com