【題目】已知函數(shù)f(x)=lnx。
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證:當(dāng)x>0時(shí),f(x)≥l-;
(3)若x-1>alnx對(duì)任意x>1恒成立,求實(shí)數(shù)a的最大值。
【答案】(1) 切線方程為y=x-1;(2)見解析;(3) 實(shí)數(shù)a的最大值為1.
【解析】試題分析:(1)求導(dǎo)得切線斜率,由點(diǎn)斜式可得切線方程;
(2)令g(x)=f(x)-(1-)=lnx-l+,求導(dǎo),得函數(shù)在(0,1)單調(diào)遞減,在(1,+)單調(diào)遞增,進(jìn)而得g(x)≥g(1)=0,從而得證;
(3)設(shè)h(x)=x-1-alnx(x≥1),求導(dǎo)得h'(x)=1-=,a≤1時(shí),a>1時(shí),判斷函數(shù)的單調(diào)性,求解最值推出結(jié)論即可.
試題解析:
(1)f'(x)=,f'(1)=1,又f(1)=0,所以切線方程為y=x-1.
(2)由題意知x>0,令g(x)=f(x)-(1-)=lnx-l+.
g'(x)=-=,
令g'(x)==0,解得x=1。
易知當(dāng)x>l時(shí),g'(x)>0,易知當(dāng)0<x<l時(shí),g'(x)<0.
即g(x)在(0,1)單調(diào)遞減,在(1,+)單調(diào)遞增.
所以g(x)min=g(1)=0,g(x)≥g(1)=0,
即g(x)=f(x)-(1-)≥0,即f(x)≥(1-).
(3)設(shè)h(x)=x-1-alnx(x≥1),依題意,對(duì)于任意x>l,h(x)>0恒成立.
h'(x)=1-=,
a≤l時(shí),h'(x)>0,h(x)在[1,+)上單調(diào)遞增,
當(dāng)x>l時(shí),h(x)>h(1)=0,滿足題意.
a>1時(shí),隨x變化,h'(x),h(x)的變化情況如下表:
x | (1,a) | a | (a,+) |
h'(x) | - | 0 | + |
h(x) | ↘ | 極小值 | ↗ |
h(x)在(1,a)上單調(diào)遞減,所以h(a)<h(1)=0,
即當(dāng)a>1時(shí),總存在h(a)<0,不合題意.
綜上所述,實(shí)數(shù)a的最大值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】能被3整除,且構(gòu)成每個(gè)數(shù)的數(shù)碼只限于1、2、3(1、2、3可以不全部用到)的所有小于200000的不同自然數(shù)個(gè)數(shù)是_____________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示,已知第組有人.
(1)求該組織的人數(shù);
(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時(shí),.其中且.
(1)求的解析式;
(2)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,規(guī)定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購不會(huì)超過600件.
(1)設(shè)一次訂購件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+10x+10y+34=0.
(Ⅰ)試寫出圓C的圓心坐標(biāo)和半徑;
(Ⅱ)圓D的圓心在直線x=-5上,且與圓C相外切,被x軸截得的弦長(zhǎng)為10,求圓D的方程;
(Ⅲ)過點(diǎn)P(0,2)的直線交(Ⅱ)中圓D于E,F兩點(diǎn),求弦EF的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異;
(3)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com