【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(1)經過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關關系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(2)該商店規(guī)定:若抽中“一等獎”,可領取600元購物券;抽中“二等獎”可領取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學期望.

參考公式:,,

【答案】(1);(2)見解析

【解析】

試題分析:

(I)由題意可得,,則,關于的線性回歸方程為

(II)由題意可知二人所獲購物券總金額的可能取值有、、元,它們所對應的概率分別為:,,據(jù)此可得分布列,計算相應的數(shù)學期望為

試題解析:

(I)依題意:,

,

,

關于的線性回歸方程為

(II)二人所獲購物券總金額的可能取值有、、、、元,它們所對應的概率分別為:

,,,

所以,總金額的分布列如下表:

0

300

600

900

1200

總金額的數(shù)學期望為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

2)對任意的,,恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)證明:在區(qū)間上存在唯一零點;

(Ⅲ)設,若對任意,均存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角A,BC的對邊分別為a,b,c,,且,,則的面積為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,8686,8888,8888.B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是

A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

為真命題,則為真命題;

命題“,有”的否定為“,有”;

“平面向量的夾角為鈍角”的充分不必要條件是“”;

在銳角三角形中,必有

為等差數(shù)列,若,則

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某共享單車經營企業(yè)欲向甲市投放單車,為制定適宜的經營策略,該企業(yè)首先在已投放單車的乙市進行單車使用情況調查.調查過程分隨機問卷、整理分析及開座談會三個階段.在隨機問卷階段,,兩個調查小組分赴全市不同區(qū)域發(fā)放問卷并及時收回;在整理分析階段,兩個調查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機抽取了300份,進行了數(shù)據(jù)統(tǒng)計,具體情況如下表:

組別

年齡

組統(tǒng)計結果

組統(tǒng)計結果

經常使用單車

偶爾使用單車

經常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達到35歲”的被抽個體數(shù)分配到“經常使用單車”和“偶爾使用單車”中去.

①求這60人中“年齡達到35歲且偶爾使用單車”的人數(shù);

②為聽取對發(fā)展共享單車的建議,調查組專門組織所抽取的“年齡達到35歲且偶爾使用單車”的人員召開座談會.會后共有3份禮品贈送給其中3人,每人1份(其余人員僅贈送騎行優(yōu)惠券).已知參加座談會的人員中有且只有4人來自組,求組這4人中得到禮品的人數(shù)的分布列和數(shù)學期望;

(2)從統(tǒng)計數(shù)據(jù)可直觀得出“是否經常使用共享單車與年齡(記作歲)有關”的結論.在用獨立性檢驗的方法說明該結論成立時,為使犯錯誤的概率盡可能小,年齡應取25還是35?請通過比較的觀測值的大小加以說明.

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程的測試,F(xiàn)對測試數(shù)據(jù)進行分析,得到如圖所示的頻率分布直方圖:

1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).

2)根據(jù)大量的汽車測試數(shù)據(jù),可以認為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經計算第(1)問中樣本標準差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標準差作為的估計值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,,.

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從)若擲出反面遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是定義域上的增函數(shù),求的取值范圍;

2)設,分別為的極大值和極小值,若,求的取值范圍.

查看答案和解析>>

同步練習冊答案