【題目】在某次數(shù)學(xué)考試中,從甲、乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班樣本成績的莖葉圖如圖所示.
(1)用樣本估計(jì)總體,若根據(jù)莖葉圖計(jì)算得甲乙兩個(gè)班級的平均分相同,求的值;
(2)從甲班的樣本不低于90分的成績中任取2名學(xué)生的成績,求這2名學(xué)生的成績不相同的概率.
【答案】(1)(2)
【解析】
(1)分別計(jì)算、,即可得到的值.
(2)首先列出從這4名學(xué)生的成績中任取2名學(xué)生的成績的全部基本事件,再確定這2名學(xué)生的成績不相同的基本事件,最后根據(jù)古典概型公式求得結(jié)果.
(1)設(shè)樣本中甲、乙兩班的平均成績分別為、,則
,
,,;
(2)由莖葉圖知:
甲班的樣本中成績不低于90分的學(xué)生有4人,記他們的成績分別為,,,(其中,表示成績?yōu)?7分的兩名學(xué)生的成績,,分別表示成績?yōu)?05分和107分的兩名學(xué)生的成績),則從這4名學(xué)生的成績中任取2名學(xué)生的成績,不同的取法有:
,,,,,.
其中,事件“所選的人成績不同”所包含的基本事件有個(gè),
所以,這2名學(xué)生的成績不相同的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象與軸無交點(diǎn),求的取值范圍;
(2)若函數(shù)在上存在零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為A、B,坐標(biāo)原點(diǎn)到直線AB的距離為,且.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)的直線交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎(jiǎng)品,則“中獎(jiǎng)”)是現(xiàn)在商家一種常見促銷手段.今年“雙十一”期間,甲、乙、丙、丁四位顧客在商場購物時(shí),每人均獲得砸一顆金蛋的機(jī)會.游戲開始前,甲、乙、丙、丁四位顧客對游戲中獎(jiǎng)結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:
甲說:“我或乙能中獎(jiǎng)”;
乙說:“丁能中獎(jiǎng)”;
丙說:“我或乙能中獎(jiǎng)”;
丁說:“甲不能中獎(jiǎng)”.
游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎(jiǎng),且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎(jiǎng)的同學(xué)是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:與直線交于A、B兩點(diǎn).
(1)當(dāng)取得最小值為時(shí),求的值.
(2)在(1)的條件下,過點(diǎn)作兩條直線PM、PN分別交拋物線C于M、N(M、N不同于點(diǎn)P)兩點(diǎn),且的平分線與軸平行,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若存在極小值,求實(shí)數(shù)的取值范圍;
(2)設(shè)是的極小值點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于任意,滿足條件且(M是與n無關(guān)的常數(shù))的無窮數(shù)列稱為M數(shù)列.
(1)若等差數(shù)列的前項(xiàng)和為,且,判斷數(shù)列是否是M數(shù)列,并說明理由;
(2)若各項(xiàng)為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,證明:數(shù)列是M數(shù)列,并指出M的取值范圍;
(3)設(shè)數(shù)列,問數(shù)列是否是M數(shù)列?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com