【題目】甲、乙兩位同學進行籃球三分球投籃比賽,甲每次投中的概率為,乙每次投中的概率為,每人分別進行三次投籃.

(I)記甲投中的次數(shù)為,求的分布列及數(shù)學期望;

(Ⅱ)求乙至多投中2次的概率;

(Ⅲ)求乙恰好比甲多投進2次的概率.

【答案】(Ⅰ)見解析;(Ⅱ)(Ⅲ)

【解析】

(I)甲投中的次數(shù)服從二項分布,利用二項分布的特征直接求解。

(Ⅱ)用減去乙投中次的概率即可得解。

(Ⅲ)乙恰好比甲多投進2次可分為:乙恰投中2次且甲恰投中0次,乙恰投中3次且甲恰投中1次,利用獨立事件同時發(fā)生的概率公式計算即可得解。

解:(Ⅰ)的可能取值為:0,1,2,3

的分布列如下表:

0

1

2

3

p

所以

(Ⅱ)乙至多投中2次的概率為

(Ⅲ)設乙比甲多投中2次為事件,乙恰投中2次且甲恰投中0次為事件,乙恰投中3次且甲恰投中1次為事件,

,為互斥事件

所以乙恰好比甲多投中2次的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標坐標系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標軸交于兩點,求以為直徑的圓的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本大題滿分12分)

隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經(jīng)營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,并繪制了相應的折線圖:

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關系,求關于的線性回歸方程,并預測公司2017年4月的市場占有率;

(Ⅱ)為進一步擴大市場,公司擬再采購一批單車,現(xiàn)有采購成本分別為元/輛和1200元/輛的、兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經(jīng)濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數(shù)表如下:

經(jīng)測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?

參考公式:回歸直線方程為,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究學生的數(shù)學核心素養(yǎng)與抽象能力(指標)、推理能力(指標)、建模能力(指標)的相關性,將它們各自量化為1、2、3三個等級,再用綜合指標的值評定學生的數(shù)學核心素養(yǎng),若,則數(shù)學核心素養(yǎng)為一級;若,則數(shù)學核心素養(yǎng)為二級;若,則數(shù)學核心素養(yǎng)為三級,為了了解某校學生的數(shù)學核心素養(yǎng),調(diào)查人員隨機訪問了某校10名學生,得到如下數(shù)據(jù)

學生編號

(1)在這10名學生中任取兩人,求這兩人的建模能力指標相同條件下綜合指標值也相同的概率;

(2)在這10名學生中任取三人,其中數(shù)學核心素養(yǎng)等級是一級的學生人數(shù)記為,求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,則關于的方程,給出下列五個命題①存在實數(shù)使得該方程沒有實根;

②存在實數(shù),使得該方程恰有個實根;

③存在實數(shù),使得該方程恰有個不同實根;

④存在實數(shù),使得該方程恰有個不同實根;

⑤存在實數(shù),使得該方程恰有個不同實根

其中正確的命題的個數(shù)是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是偶函數(shù)的導函數(shù),在區(qū)間上的唯一零點為2,并且當,,則使得成立的的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 設命題p:函數(shù)y在定義域上為減函數(shù);命題qa,b(0,+∞),當ab=1時,=3.以下說法正確的是(  )

A. pq為真B. pq為真

C. pqD. p,q均假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級共有名學生,其中男生名,女生名,該校組織了一次口語模擬考試(滿分為分).為研究這次口語考試成績?yōu)楦叻质欠衽c性別有關,現(xiàn)按性別采用分層抽樣抽取名學生的成績,按從低到高分成,,,,,七組,并繪制成如圖所示的頻率分布直方圖.已知的頻率等于的頻率,的頻率與的頻率之比為,成績高于分的為“高分”.

(1)估計該校高一年級學生在口語考試中,成績?yōu)椤案叻帧钡娜藬?shù);

(2)請你根據(jù)已知條件將下列列聯(lián)表補充完整,并判斷是否有的把握認為“該校高一年級學生在本次口語考試中成績及格(分以上(含分)為及格)與性別有關”?

口語成績及格

口語成績不及格

合計

男生

女生

合計

附臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為, , 當時,, 則函數(shù)在區(qū)間上的所有零點的和為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案