【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對首次消費(fèi)的顧客,按/次收費(fèi),并注冊成為會(huì)員,對會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費(fèi)比率 |
該公司注冊的會(huì)員中沒有消費(fèi)超過次的,從注冊的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次數(shù) | 次 | 次 | 次 | 次 | 次 |
人數(shù) |
假設(shè)汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤;
(2)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會(huì)員服務(wù)的平均利潤為元,求的分布列和數(shù)學(xué)期望.
【答案】(1)元(2)答案見解析
【解析】
(1)第一次消費(fèi)為元,利潤為元, 第二次消費(fèi)元,利潤為元,即可求得答案;
(2)因?yàn)?/span>/次收費(fèi),公司成本為元,設(shè)該公司為一位會(huì)員服務(wù)的平均利潤為元,根據(jù)頻率計(jì)算公式求出頻率,即可求得的分布列和數(shù)學(xué)期望,即可求得答案.
(1) 第一次消費(fèi)為元,利潤為元;
第二次消費(fèi)元,利潤為元;
兩次消費(fèi)的平均利潤為元.
(2) /次收費(fèi),公司成本為元,
消費(fèi)次平均利潤為元
消費(fèi)次平均利潤為元
消費(fèi)次平均利潤為元
消費(fèi)次平均利潤為元
消費(fèi)次平均利潤為元
若該會(huì)員消費(fèi)次,則,;
若該會(huì)員消費(fèi)次,則,;
若該會(huì)員消費(fèi)次,則,;
若該會(huì)員消費(fèi)次,則,;
若該會(huì)員消費(fèi)次,則,.
故的分布列為:
的期望為(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4,點(diǎn)P(2,3)在橢圓上.
(1)求橢圓C的方程;
(2)過點(diǎn)P引圓的兩條切線PA,PB,切線PA,PB與橢圓C的另一個(gè)交點(diǎn)分別為A,B,試問直線AB的斜率是否為定值?若是,求出其定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),若直線是函數(shù)的圖象的切線,求的最小值;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)A 型零件和1個(gè)B 型零件配套組成.每個(gè)工人每小時(shí)能加工5個(gè)A 型零件或者3個(gè)B 型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*)
(1)設(shè)完成A 型零件加工所需時(shí)間為小時(shí),寫出的解析式;
(2)為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)滿足且是它的零點(diǎn),則函數(shù)是“有趣的”,例如就是“有趣的”,已知是“有趣的”.
(1)求出b、c并求出函數(shù)的單調(diào)區(qū)間;
(2)若對于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為橢圓:的下頂點(diǎn),橢圓長半軸的長等于橢圓的短軸長,且橢圓經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)的直線與直線交于點(diǎn),與橢圓交于,點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,直線交直線交于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)支付也稱為移動(dòng)支付,是指允許用戶使用其移動(dòng)終端(通常是手機(jī))對所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.隨著信息技術(shù)的發(fā)展,手機(jī)支付越來越成為人們喜歡的支付方式.某機(jī)構(gòu)對某地區(qū)年齡在15到75歲的人群“是否使用手機(jī)支付”的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用手機(jī)支付的人數(shù)如下所示:(年齡單位:歲)
年齡段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“使用手機(jī)支付”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | |
使用手機(jī)支付 | ||
不使用手機(jī)支付 |
(2)若從年齡在[55,65),[65,75]的樣本中各隨機(jī)選取2人進(jìn)行座談,記選中的4人中“使用手機(jī)支付”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1,BC的中點(diǎn).
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.(其中實(shí)數(shù)).
(1)分別求出p,q中關(guān)于x的不等式的解集M和N;
(2)若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com