【題目】已知函數(shù)的最小正周期是,其圖象向右平移個單位后得到的函數(shù)為奇函數(shù).有下列結(jié)論:

①函數(shù)的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱;③函數(shù)上是減函數(shù);④函數(shù)上的值域為.

其中正確結(jié)論的個數(shù)是(

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)函數(shù)最小正周期可求得,由函數(shù)圖象平移后為奇函數(shù),可求得,即可得函數(shù)的解析式.再根據(jù)正弦函數(shù)的對稱性判斷①②,利用函數(shù)的單調(diào)區(qū)間判斷③,由正弦函數(shù)的圖象與性質(zhì)判斷④即可.

函數(shù)的最小正周期是

,

向右平移個單位可得

為奇函數(shù),可知

解得

因為

所以當(dāng),

對于①,當(dāng),代入解析式可得,即點不為對稱中心,所以①錯誤;

對于②,當(dāng)時帶入的解析式可得,所以函數(shù)的圖象關(guān)于直線對稱,所以②正確;

對于③, 的單調(diào)遞減區(qū)間為

解得

當(dāng),單調(diào)遞減區(qū)間為,

,所以函數(shù)上是減函數(shù),故③正確;

對于④,當(dāng), 由正弦函數(shù)的圖像與性質(zhì)可知,

,故④正確.

綜上可知,正確的為②③④

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進行求解;(2),得到關(guān)于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點到直線的的距離進行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
結(jié)束】
20

【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓軸交于, 兩點,設(shè)直線的方程為

(1)當(dāng)直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于 兩點.

(。┤,求實數(shù)的取值范圍;

(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為 , ,

是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),若不等式對于任意的x都成立,求實數(shù)b的取值范圍;

2)設(shè),解關(guān)于x的不等式組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)

(Ⅰ)若是函數(shù)的一個極值點,求此時函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意的,,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是( )

A. 上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線

D. 上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,圓軸負(fù)半軸交于點,過點的直線,分別與圓交于,兩點.

)若,,求的面積;

)若直線過點,證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的奇函數(shù),且在上單調(diào)遞增.

(1)求證:上單調(diào)遞增;

(2)若不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

同步練習(xí)冊答案