【題目】已知橢圓()的右焦點(diǎn)為F,左頂點(diǎn)為A,離心率,且經(jīng)過(guò)圓O:的圓心.過(guò)點(diǎn)F作不與坐標(biāo)軸重合的直線和該橢圓交于MN兩點(diǎn),且直線分別與直線交于PQ兩點(diǎn).
(1)求橢圓的方程;
(2)證明:為直角三角形.
【答案】(1)(2)證明見(jiàn)解析
【解析】
根據(jù)條件橢圓過(guò)點(diǎn),即,由以及,可求橢圓方程.
(2)設(shè),,根據(jù)點(diǎn)共線求出點(diǎn)坐標(biāo),設(shè)直線的方程,代入橢圓方程,利用韋達(dá)定理及直線的斜率公式即可得到,即證明結(jié)論成立.
(1)由題意知,圓O:的圓心為
.∵橢圓()過(guò)圓O:的圓心,
∴.又,,∴
.∴所求橢圓的方程為.
(2)設(shè),,可設(shè)直線l的方程為.
聯(lián)立,可得.
∴
.根據(jù)AMP三點(diǎn)共線可得.
∴.同理可得
.∴PQ的坐標(biāo)分別為,.
設(shè)直線的斜率為,直線的斜率為,則
∴. ∴為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點(diǎn),點(diǎn)的坐標(biāo)為(3,1),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和圓,拋物線的焦點(diǎn)為.
(1)求的圓心到的準(zhǔn)線的距離;
(2)若點(diǎn)在拋物線上,且滿足, 過(guò)點(diǎn)作圓的兩條切線,記切點(diǎn)為,求四邊形的面積的取值范圍;
(3)如圖,若直線與拋物線和圓依次交于四點(diǎn),證明:的充要條件是“直線的方程為”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個(gè)封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個(gè)單位,得到一幾何體.現(xiàn)有一個(gè)與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將方格紙中每個(gè)小方格染三種顏色之一,使得每種顏色的小方格的個(gè)數(shù)相等.若相鄰兩個(gè)小方格的顏色不同,稱(chēng)他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )
A.33B.56C.64D.78
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ) 求曲線在點(diǎn)處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設(shè),當(dāng)時(shí),若對(duì)任意的,存在,使得≥,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域是一切實(shí)數(shù)的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)()使得對(duì)任意實(shí)數(shù)都成立,則稱(chēng)是一個(gè)“-伴隨函數(shù)”,有下列關(guān)于“-伴隨函數(shù)”的結(jié)論:①是常數(shù)函數(shù)唯一一個(gè)“-伴隨函數(shù)”;②“-伴隨函數(shù)”至少有一個(gè)零點(diǎn);③是一個(gè)“-伴隨函數(shù)”;其中正確結(jié)論的個(gè)數(shù)( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出下列命題:
①若,,,則;
②若,,,則或;
③若,,,則或;
④若,,,,則且;
其中正確命題的序號(hào)是( 。
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某高中學(xué)生的體能測(cè)試結(jié)果中,隨機(jī)抽取100名學(xué)生的測(cè)試結(jié)果,按體重分組得到如圖所示的頻率分布直方圖.
(1)若該校約有的學(xué)生體重不超過(guò)“標(biāo)準(zhǔn)體重”,試估計(jì)的值,并說(shuō)明理由;
(2)從第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行了第二次測(cè)試,現(xiàn)從這6人中隨機(jī)抽取2人進(jìn)行日常運(yùn)動(dòng)習(xí)慣的問(wèn)卷調(diào)查,求抽到4組的人數(shù)的分布列及期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com