【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個(gè)封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個(gè)單位,得到一幾何體.現(xiàn)有一個(gè)與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.

【答案】

【解析】

陰影區(qū)域在上為半個(gè)圓,所以柱體的底面積為半圓的面積減去函數(shù)上的積分,有了底面積,又知道高為6,即可得到柱體的體積.

解:由題意得,陰影區(qū)域在上為半個(gè)圓,
底面積,
所以該柱體的 體積為.
故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為梯形,AB//CD,∠BAD60°,CD1,AD2,AB4,點(diǎn)G在線段AB上,AG3GB,AA11

1)證明:D1G/平面BB1C1C

2)求二面角A1D1GA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1底面四邊形ABCD為菱形,A1AAB2,∠ABC,E,F分別是BCA1C的中點(diǎn)

(1)求異面直線EF,AD所成角的余弦值;

(2)點(diǎn)M在線段A1D上, .若CM∥平面AEF,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足,,是數(shù)列的前項(xiàng)和().

(1)設(shè)數(shù)列是首項(xiàng)和公比都為的等比數(shù)列,且數(shù)列也是等比數(shù)列,求的值;

(2)設(shè),若對(duì)恒成立,求的取值范圍;

(3)設(shè),,,),若存在整數(shù),,且,使得成立,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】蔬菜批發(fā)市場(chǎng)銷售某種蔬菜,在一個(gè)銷售周期內(nèi),每售出1噸該蔬菜獲利500元,未售出的蔬菜低價(jià)處理,每噸虧損100元.統(tǒng)計(jì)該蔬菜以往100個(gè)銷售周期的市場(chǎng)需求量,繪制下圖所示頻率分布直方圖.

(Ⅰ)求的值,并求100個(gè)銷售周期的平均市場(chǎng)需求量(以各組的區(qū)間中點(diǎn)值代表該組的數(shù)值);

(Ⅱ)若經(jīng)銷商在下個(gè)銷售周期購(gòu)進(jìn)了190噸該蔬菜,設(shè)為該銷售周期的利潤(rùn)(單位:元),為該銷售周期的市場(chǎng)需求量(單位:噸).求的函數(shù)解析式,并估計(jì)銷售的利潤(rùn)不少于86000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾頓板是英國(guó)生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)用來(lái)研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯(cuò)開(kāi)的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ,前面擋有一塊玻璃,讓一個(gè)小球從高爾頓板上方的通道口落下,小球在下落的過(guò)程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的小木塊中,上面7層為高爾頓板,最下面一層為改造的高爾頓板,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以的概率向左或向右滾下,依次經(jīng)過(guò)6次與小木塊碰撞,最后掉入編號(hào)為12…,7的球槽內(nèi).例如小球要掉入3號(hào)球槽,則在前5次碰撞中有2次向右3次向左滾到第6層的第3個(gè)空隙處,再以的概率向左滾下,或在前5次碰撞中有1次向右4次向左滾到第6層的第2個(gè)空隙處,再以的概率向右滾下.

(1)若進(jìn)行一次高爾頓板試驗(yàn),求小球落入第7層第6個(gè)空隙處的概率;

(2)小明同學(xué)在研究了高爾頓板后,利用該圖中的高爾頓板來(lái)到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎(jiǎng)”活動(dòng),8元可以玩一次高爾頓板游戲,小球掉入X號(hào)球槽得到的獎(jiǎng)金為元,其中.

i)求X的分布列:

ii)高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲,你覺(jué)得小明同學(xué)能盈利嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓()的右焦點(diǎn)為F,左頂點(diǎn)為A,離心率,且經(jīng)過(guò)圓O:的圓心.過(guò)點(diǎn)F作不與坐標(biāo)軸重合的直線和該橢圓交于MN兩點(diǎn),且直線分別與直線交于PQ兩點(diǎn).

1)求橢圓的方程;

2)證明:為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合表示具有下列性質(zhì)的函數(shù)的集合:①的定義域?yàn)?/span>;②對(duì)任意,都有

1)若函數(shù),證明是奇函數(shù);并當(dāng),,求,的值;

2)設(shè)函數(shù)a為常數(shù))是奇函數(shù),判斷是否屬于,并說(shuō)明理由;

3)在(2)的條件下,若,討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由郭帆執(zhí)導(dǎo)吳京主演的電影《流浪地球》于201925日起在中國(guó)內(nèi)地上映,影片引發(fā)了觀影熱潮,預(yù)計(jì)《流浪地球》票房收入47億人民幣,超過(guò)《紅海行動(dòng)》成為中國(guó)影史票房亞軍,僅次于《戰(zhàn)狼2.某電影院為了解該影院觀看《流浪地球》的觀眾的年齡構(gòu)成情況,隨機(jī)抽取了40名觀眾,將他們的年齡分成7段:,,,,,,得到如圖所示的頻率分布直方圖.

1)試求這40名觀眾年齡的平均數(shù)、中位數(shù)、眾數(shù);

2)(i)若從樣本中年齡在50歲以上的觀眾中任取3名贈(zèng)送VIP貴賓觀影卡,求這3名觀眾至少有1人年齡不低于70歲的概率;

ii)該電影院決定采用抽獎(jiǎng)方式來(lái)提升觀影人數(shù),將《流浪地球》電影票票價(jià)提高20元,并允許購(gòu)買電影票的觀眾抽獎(jiǎng)3次,中獎(jiǎng)1次、2次、3次分別獎(jiǎng)現(xiàn)金元、元,.設(shè)觀眾每次中獎(jiǎng)的概率均為,若要使抽獎(jiǎng)方案對(duì)電影院有利,則最高可定為多少元?(結(jié)果精確到個(gè)位)

查看答案和解析>>

同步練習(xí)冊(cè)答案