【題目】已知,函數(shù).

1)若,證明:當(dāng)時(shí),;

2)若的極小值點(diǎn),求的取值范圍.

【答案】1)證明見解析;(2.

【解析】

1)將代入函數(shù)的解析式,得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值為,從而可證明出所證不等式成立;

2)分三種情況討論,分析函數(shù)的導(dǎo)函數(shù)附近符號(hào)的變化,結(jié)合條件“的極小值點(diǎn)”,可得出實(shí)數(shù)的取值范圍.

1)若,.

設(shè)函數(shù),則.

當(dāng)時(shí),,當(dāng)時(shí),,

所以,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

所以在上,.

又因?yàn)楫?dāng)時(shí),,所以當(dāng)時(shí),;

2)(i)若,由(1)可知當(dāng)時(shí),,這與的極小值點(diǎn)矛盾.

ii)若,對于方程,因?yàn)?/span>,且,

故方程有兩個(gè)實(shí)根、,且滿足.

當(dāng)時(shí),

結(jié)合(1),可得.

這與的極小值點(diǎn)矛盾.

iii)若,設(shè)函數(shù).

由于當(dāng)時(shí),,故符號(hào)相同.

,所以的極小值點(diǎn)等價(jià)于的極小值點(diǎn).

.

得,.

如果,則當(dāng)時(shí),,當(dāng)時(shí),,所以不是的極小值點(diǎn).

如果,則當(dāng)時(shí),,所以不是的極小值點(diǎn).

如果,則當(dāng)時(shí),,當(dāng)時(shí),,所以的極小值點(diǎn),從而的極小值點(diǎn),此時(shí).

綜上所述,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年某市政府出臺(tái)了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項(xiàng)目之一的“市區(qū)公交站點(diǎn)的重新布局及建設(shè)”基本完成,市有關(guān)部門準(zhǔn)備對項(xiàng)目進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗(yàn)收,調(diào)查人員分別在市區(qū)的各公交站點(diǎn)隨機(jī)抽取若干市民對該項(xiàng)目進(jìn)行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨(dú)立評分;②采用百分制評分, 內(nèi)認(rèn)定為滿意,80分及以上認(rèn)定為非常滿意;③市民對公交站點(diǎn)布局的滿意率不低于60%即可進(jìn)行驗(yàn)收;④用樣本的頻率代替概率.

(1)求被調(diào)查者滿意或非常滿意該項(xiàng)目的頻率;

(2)若從該市的全體市民中隨機(jī)抽取3人,試估計(jì)恰有2人非常滿意該項(xiàng)目的概率;

(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔(dān)任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)一個(gè)動(dòng)點(diǎn)M到定點(diǎn)F(30)的距離和它到定直線lx=6的距離之比是常數(shù)

(1)求動(dòng)點(diǎn)M的軌跡T的方程;

(2)若直線lx+y-3=0與軌跡T交于A,B兩點(diǎn),且線段AB的垂直平分線與T交于C,D兩點(diǎn),試問A,BC,D是否在同一個(gè)圓上?若是,求出該圓的方程;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),曲線在點(diǎn)處的切線與軸、軸分別交于,兩點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),①;②的面積為定值;③曲線上存在兩點(diǎn)使得是等邊三角形;④曲線上存在兩點(diǎn),使得是等腰直角三角形,其中真命題的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為的直線與橢圓相交于,兩點(diǎn),使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)成就甚大,在世界科技史上占有重要的地位.“算經(jīng)十書”是漢、唐千余年間陸續(xù)出現(xiàn)的10部數(shù)學(xué)著作,包括《周髀算經(jīng)》、《九章算術(shù)》、……、《綴術(shù)》等,它們曾經(jīng)是隋唐時(shí)期國子監(jiān)算學(xué)科的教科書.某中學(xué)圖書館全部收藏了這10部著作,其中4部是古漢語本,6部是現(xiàn)代譯本,若某學(xué)生要從中選擇2部作為課外讀物,至少有一部是現(xiàn)代譯本的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列1,12,1,24,12,48,1,2,4,8,16,…,其中第一項(xiàng)是,接下來的兩項(xiàng)是,,再接下來的三項(xiàng)是,,依此類推,若該數(shù)列前項(xiàng)和滿足:①2的整數(shù)次冪,則滿足條件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)證明:,都有;

2)若函數(shù)有且只有一個(gè)零點(diǎn),求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,設(shè),是橢圓的兩個(gè)短軸端點(diǎn),是橢圓的長軸左端點(diǎn).

1)當(dāng)時(shí),設(shè)點(diǎn),直線交橢圓,且直線、的斜率分別為,求的值;

2)當(dāng)時(shí),若經(jīng)過的直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),求的面積之差的最大值.

查看答案和解析>>

同步練習(xí)冊答案