【題目】已知, ,

(1)求;(2)若不等式的解集是,求的解集.

【答案】(1);(2)

【解析】試題分析:(1)由一元二次不等式的解法分別求出集合A,B,再利用集合的交集即可求出答案;(2)由一元二次方程的實(shí)數(shù)根與不等式的解集的關(guān)系,結(jié)合(1)中結(jié)論可先求得a、b的值,接著將a、b的值代入不等式ax2+x-b<0中并求解不等式即可.

試題解析:

(1)由A={x|x2-2x-3<0}={x|-1<x<3},

B={x|x2-5x+6>0}={x|x<2x>3},

∴A∩B={x|-1<x<2}.

(2)由題意,得-1,2是方程x2+ax+b=0的兩根,

解得a=1,b=2,

不等式ax2+x-b<0可化為-x2+x+2<0,解得x<-1x>2.

ax2+x-b<0的解集為{x|x<-1x>2}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到,另一種是先從沿索道乘纜車到然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)乙從乘纜車到,處停留,再?gòu)?/span>勻速步行到,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長(zhǎng)為1260,經(jīng)測(cè)量,

1求索道的長(zhǎng)

2問(wèn):乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時(shí)間不超過(guò),乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,右頂點(diǎn)為.

(1)的方程;

(2)直線與曲線交于不同的兩點(diǎn),若在軸上存在一點(diǎn),使得,求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-1《幾何證明選講》

已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn)

1)求證:BD平分∠ABC;

2)若AB=4,AD=6,BD=8,求AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛大叔常說(shuō)價(jià)貴貨不假,他這句話的意思是:不貴假貨的(

A.充分條件B.必要條件C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)p-1x<2,qx<a,若qp的必要條件,則a的取值范圍是(

A.a≤-1B.a≤-1a2C.a≥2D.-1≤a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),已知曲線在原點(diǎn)處的切線相同.

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí)恒成立,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓)的圓心為點(diǎn),直線

(1)若求直線被圓所截得弦長(zhǎng)的最大值;

(2)若直線是圓心下方的切線,當(dāng)上變化時(shí),的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案