【題目】已知圓)的圓心為點(diǎn),直線

(1)若,求直線被圓所截得弦長(zhǎng)的最大值;

(2)若直線是圓心下方的切線,當(dāng)上變化時(shí)的取值范圍

【答案】(1)(2)

【解析】

試題分析:(1)將圓的方程化為標(biāo)準(zhǔn)方程,求的圓心坐標(biāo)和半徑,再求得圓心到直線的距離,由圓的弦長(zhǎng)、圓心距和圓的半徑之間,利用弦長(zhǎng)的關(guān)系式,再利用二次函數(shù)的性質(zhì),即可求解弦長(zhǎng)的最大值;(2)由直線與圓相切,建立的關(guān)系式,由,在由點(diǎn)圓心在直線下方,將轉(zhuǎn)化為關(guān)于的二次函數(shù),即可求解的取值范圍

試題解析:(1),

,

圓心為半徑為,

設(shè)直線被圓所截得弦長(zhǎng)為),

圓心到直線的距離為時(shí),直線,

圓心到直線的距離

,

,所以當(dāng)時(shí),

直線被圓所截得弦長(zhǎng)的值最大,其最大值為

(2)圓心到直線的距離,

直線是圓的切線,,,

,

直線在圓心的下方,,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,

(1)求;(2)若不等式的解集是,求的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,A(1, 3),AB、AC邊上的中線所在直線方程分別為 ,求各邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M過兩點(diǎn)A(1,﹣1),B(﹣1,1),且圓心M在直線x+y﹣2=0上.

(1)求圓M的方程.

(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PC、PD是圓M的兩條切線,C、D為切點(diǎn),求四邊形PCMD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的對(duì)稱軸為,

(1)求函數(shù)的最小值及取得最小值時(shí)的值;

(2)試確定的取值范圍,使至少有一個(gè)實(shí)根;

(3)當(dāng)時(shí),,對(duì)任意恒成立,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)fx)=Asin(ωx+φ)(ω>0,|φ|<)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx

0

π

x

Asin(ωx+φ)

0

3

0

-3

0

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

(2)令g(x)=f (x+)-,當(dāng)x∈[, ]時(shí),恒有不等式g(x)-a-3<0成立,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2sinxcosxcos2x.

1f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;

2求函數(shù)f(x)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求滿足的取值;

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在簡(jiǎn)單隨機(jī)抽樣中,某一個(gè)個(gè)體被抽到的可能性(

A.第一次被抽到的可能性最大B.第一次被抽到的可能性最小

C.每一次被抽到的可能性相等D.與抽取幾個(gè)樣本有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案