【題目】設(shè)點(diǎn),分別是橢圓:的左、右焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的距離的最小值為.點(diǎn)M、N是橢圓上位于軸上方的兩點(diǎn),且向量與向量平行.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求△的面積;
(3)當(dāng)時(shí),求直線的方程.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)橢圓的簡(jiǎn)單性質(zhì)可得,解得即可,
(2)可設(shè),,根據(jù)向量的數(shù)量積求出點(diǎn)的坐標(biāo),再根據(jù)直線平行,求出的坐標(biāo),
利用兩點(diǎn)間的距離公式和點(diǎn)到直線的距離公式和三角形的面積公式計(jì)算即可,
(3)向量與向量平行,不妨設(shè),設(shè),,,,根據(jù)坐標(biāo)之間的關(guān)系,求得的坐標(biāo),再根據(jù)向量的模,即可求出的值,根據(jù)斜率公式求出直線的斜率,根據(jù)直線平行和點(diǎn)斜式即可求出直線方程.
解:(1)點(diǎn)、分別是橢圓的左、右焦點(diǎn),
,,
橢圓上的點(diǎn)到點(diǎn)的距離的最小值為,
,
解得,
橢圓的方程為,
(2)由(1)可得,,
點(diǎn)、是橢圓上位于軸上方的兩點(diǎn),
可設(shè),,
,,,,
,
,
解得,,
,
,
,
向量與向量平行,
直線的斜率為,
直線方程為,
聯(lián)立方程組,解得,(舍去),或,,
,,
,
點(diǎn)到直線直線的距離為,
的面積,
(3)向量與向量平行,
,
,
,即,
設(shè),,,,
,,
,
,
,
,
,
,
,
,
,
解得,或(舍去)
,
,
,
,
直線的方程為,
即為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司進(jìn)行共享單車的投放與損耗統(tǒng)計(jì),到去年年底單車的市場(chǎng)保有量(已投入市場(chǎng)且能正常使用的單車數(shù)量)為輛,預(yù)計(jì)今后每年新增單車1000輛,隨著單車的頻繁使用,估計(jì)每年將有200輛車的損耗,并且今后若干年內(nèi),年平均損耗在上一年損耗基礎(chǔ)上增加%.
(1)預(yù)計(jì)年底單車的市場(chǎng)保有量是多少?
(2)到哪一年底,市場(chǎng)的單車保有量達(dá)到最多?該年的單車保有量是多少輛(最后結(jié)果精確到整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)大于0的等差數(shù)列的公差,且;
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:,,,其中;
①求數(shù)列的通項(xiàng);
②是否存在實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;
(2)已知關(guān)于的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線:與曲線,分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出四個(gè)函數(shù):①;②;③;④,從其中任選個(gè),則事件:“所選個(gè)函數(shù)圖象有且僅有個(gè)公共點(diǎn)”的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若(是與無(wú)關(guān)的常數(shù),)則稱數(shù)列叫做“弱等差數(shù)列”已知數(shù)列滿足:且,對(duì)于恒成立,(其中都是常數(shù))
(1)求證:數(shù)列是“弱等差數(shù)列”,并求出數(shù)列的通項(xiàng)公式
(2)當(dāng)時(shí),若數(shù)列是單調(diào)遞增數(shù)列,求的取值范圍
(3)若,且,數(shù)列滿足:,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司舉辦捐步公益活動(dòng),參與者通過(guò)捐贈(zèng)每天的運(yùn)動(dòng)步數(shù)獲得公司提供的牛奶,再將牛奶捐贈(zèng)給留守兒童.此活動(dòng)不但為公益事業(yè)作出了較大的貢獻(xiàn),公司還獲得了相應(yīng)的廣告效益.據(jù)測(cè)算,首日參與活動(dòng)人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設(shè)此項(xiàng)活動(dòng)的啟動(dòng)資金為萬(wàn)元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).
(1)求活動(dòng)開(kāi)始后第天的捐步人數(shù),及前天公司的捐步總收益;
(2)活動(dòng)開(kāi)始第幾天以后公司的捐步總收益可以收回啟動(dòng)資金并有盈余?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com