【題目】函數(shù),
(1)設(shè)函數(shù)的定義域為A
①若,,,求實數(shù)c的值.
②若,,,求M的最小值
(2)若,對任意的,存在,使得不等式成立,求實數(shù)n的取值范圍.
【答案】(1)①;②;(2)
【解析】
(1)①依題意可知的解集為,則與為方程的兩根,利用韋達定理得到方程組解得即可;
②依題意可知恒成立,即即可得到,所以在利用基本不等式計算可得;
(2)依題意可知對任意的,存在,使得不等式成立,根據(jù)二次函數(shù)的性質(zhì)計算的最小值,從而得出與之間的關(guān)系,分離參數(shù)得出,求出右側(cè)函數(shù)的最大值即可得出的范圍.
解:(1)①當,,,即的解集為,
則與為方程的兩根,
解得
②若,,即恒成立,
即,,
因為,,所以
當且僅當時取等號,
所以的最小值為
(2)若,對任意的,存在,使得不等式成立
即對任意的,存在,使得不等式成立,
即,
所以當時,取得最小值
所以
因為,
所以
因為,函數(shù)在上單調(diào)遞增,
所以
即
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人是“微信控”的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),當時,若是的唯一極值點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,點E是棱PB的中點.
(1)求異面直線EC與PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一產(chǎn)品的生產(chǎn)中所獲利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論錯誤的結(jié)論是( )
A.B.
C.與平面所成的角為30°D.四面體的體積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com