如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.

(1) y=3或3x+4y-12=0   (2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,

在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的方程為,點是坐標原點.直線與圓交于兩點.
(1)求的取值范圍;
(2)過作圓的弦,求最小弦長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓經(jīng)過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知圓和直線,上一動點,,為圓軸的兩個交點,直線,與圓的另一個交點分別為
(1)若點的坐標為(4,2),求直線方程;
(2)求證直線過定點,并求出此定點的坐標.

查看答案和解析>>

同步練習冊答案