已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.

(1)當m=2時,圓的半徑有最小值1,此時圓的面積最。
(2)x=1或4x-3y-10=0.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同交點;
(2)若圓C與直線l相交于A,B兩點,求弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2014·廣州模擬)已知☉M:x2+(y-2)2=1,Q是x軸上的動點,QA,QB分別切☉M于A,B兩點.
(1)如果|AB|=,求直線MQ的方程.
(2)求證:直線AB恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求圓心在直線上,與軸相切,且被直線截得的弦長為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點在圓內(nèi),動直線過點且交圓兩點,若△ABC的面積的最大值為,則實數(shù)的取值范圍為      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,直線為參數(shù))與圓為參數(shù))相切,切點在第一象限,則實數(shù)的值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直線l過點(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點,如果AB=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(幾何證明選講選做題)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點BPB=1,則圓O的半徑為R=         

查看答案和解析>>

同步練習冊答案