已知圓M過兩點(diǎn)A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點(diǎn),PA′、PB′是圓M的兩條切線,A′、B′為切點(diǎn),求四邊形PA′MB′面積的最小值.

(1)(x-1)2+(y-1)2=4.(2)2

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同交點(diǎn);
(2)若圓C與直線l相交于A,B兩點(diǎn),求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線為參數(shù))與圓為參數(shù))相切,切點(diǎn)在第一象限,則實(shí)數(shù)的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線l過點(diǎn)(-4,0)且與圓(x+1)2+(y-2)2=25交于A,B兩點(diǎn),如果AB=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的圓心與點(diǎn)P(-2,1)關(guān)于直線y=x+1對稱,直線3x+4y-11=0與圓C相交于A、B兩點(diǎn),且=6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程:,其中
(1)若圓C與直線相交于,兩點(diǎn),且,求的值;
(2)在(1)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程為:,直線的方程為,點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為

(1)若,求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為,過點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時,求直線的方程;
(3)求證:經(jīng)過(其中點(diǎn)為圓的圓心)三點(diǎn)的圓必經(jīng)過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點(diǎn)C(t,)(t∈R,t≠0)為圓心的圓與軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn)
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=–2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程

查看答案和解析>>

同步練習(xí)冊答案