在平面直角坐標(biāo)系中,已知圓和直線上一動(dòng)點(diǎn),,為圓軸的兩個(gè)交點(diǎn),直線與圓的另一個(gè)交點(diǎn)分別為
(1)若點(diǎn)的坐標(biāo)為(4,2),求直線方程;
(2)求證直線過(guò)定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

(1);(2)證明過(guò)程詳見(jiàn)解析,.

解析試題分析:本題考查圓與直線的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、分析問(wèn)題解決問(wèn)題的能力.第一問(wèn),先求出圓軸的2個(gè)交點(diǎn)的坐標(biāo),列出的直線方程,讓它們與圓聯(lián)立得出交點(diǎn)坐標(biāo),利用兩點(diǎn)式寫(xiě)出直線的方程;第二問(wèn),設(shè)出動(dòng)點(diǎn),寫(xiě)出直線的方程,與圓聯(lián)立得出點(diǎn)坐標(biāo),寫(xiě)出直線的方程,可以看出恒過(guò)定點(diǎn).
試題解析:(1)當(dāng),則.
直線的方程:,


直線的方程:
,
.
由兩點(diǎn)式,得直線方程為:.     6分
(2)設(shè),則直線的方程:,直線的方程:


當(dāng)時(shí),,則直線:
化簡(jiǎn)得,恒過(guò)定點(diǎn)
當(dāng)時(shí),,直線, 恒過(guò)定點(diǎn)
故直線過(guò)定點(diǎn).………12分
考點(diǎn):1.直線與圓的交點(diǎn)坐標(biāo)的求法;2.兩點(diǎn)式方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x-1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:以點(diǎn)C(t,)(t∈R,t≠0)為圓心的圓與軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn)
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=–2x+4與圓C交于點(diǎn)M,N,若OM=ON,求圓C的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓,點(diǎn).

(1)求圓心在直線上,經(jīng)過(guò)點(diǎn),且與圓相外切的圓的方程;
(2)若過(guò)點(diǎn)的直線與圓交于兩點(diǎn),且圓弧恰為圓周長(zhǎng)的,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓

(Ⅰ)若圓軸相切,求圓的方程;
(Ⅱ)已知,圓C與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓相交于兩點(diǎn).問(wèn):是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

有一圓與直線l:4x-3y+6=0相切于點(diǎn)A(3,6),且經(jīng)過(guò)點(diǎn)B(5,2),求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定點(diǎn),,直線(為常數(shù)).
(1)若點(diǎn)、到直線的距離相等,求實(shí)數(shù)的值;
(2)對(duì)于上任意一點(diǎn),恒為銳角,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).若直線與圓相交于,兩點(diǎn),且.
(Ⅰ)求圓的直角坐標(biāo)方程,并求出圓心坐標(biāo)和半徑;
(Ⅱ)求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案