【題目】下面是幾何體的三視圖及直觀圖.
(1)試判斷線段上是否存在一點(diǎn),使得平面,請(qǐng)說(shuō)明理由;
(2)證明:.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】分析:(1)取BC與EC的中點(diǎn)H,G,可證HG與AD平行且相等,從而得ADGH是平行四邊形,因此有AH//DG,從而得線面平行;
(2)由題中條件證明垂直后計(jì)算出的長(zhǎng)度,再用勾股定理逆定理證得.
詳解: (1)存在線段的中點(diǎn),使得平面,理由如下:
由三視圖可知,,且平面,平面
取的中點(diǎn),連接,
因?yàn)?/span>為中點(diǎn),所以 ,且
因?yàn)樗倪呅?/span>是直角梯形,,且,
所以,所以四邊形為平行四邊形,所以
因?yàn)?/span>平面,平面,所以平面.
(2)因?yàn)?/span>平面,所以,
所以,因?yàn)樗倪呅?/span>為矩形,
所以,,所以平面,
又,故平面,平面,
所以,故,
因?yàn)樗倪呅?/span>為直角梯形,,且,
所以,∴.
又,即,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口是的中點(diǎn),分別落在線段上.已知米,米,記.
(1)試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)若,求此時(shí)管道的長(zhǎng)度;
(3)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。
A.y=
B.y=cosx
C.y=|lnx|
D.y=2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】復(fù)利是一種計(jì)算利息的方法.即把前一期的利息和本金加在一起算作本金,再計(jì)算下一期的利息.某同學(xué)有壓歲錢(qián)1000元,存入銀行,年利率為2.25%;若放入微信零錢(qián)通或
者支付寶的余額寶,年利率可達(dá)4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息( )元.(參考數(shù)據(jù):)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.
(Ⅰ)試問(wèn)在抽取的學(xué)生中,男、女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分幾)的把握認(rèn)為“身高與性別有關(guān)”?
≥170cm | <170cm | 總計(jì) | |
男生身高 | |||
女生身高 | |||
總計(jì) |
(Ⅲ)在上述80名學(xué)生中,從身高在170~175cm之間的學(xué)生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.
參考公式:K2=
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,給出關(guān)于的下列命題:
①函數(shù)在處取得極小值;
②函數(shù)在是減函數(shù),在是增函數(shù);
③當(dāng)時(shí),函數(shù)有4個(gè)零點(diǎn);
④如果當(dāng)時(shí),的最大值是2,那么的最小值為0.
其中所有的正確命題是__________(寫(xiě)出正確命題的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com