【題目】下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。
A.y=
B.y=cosx
C.y=|lnx|
D.y=2|x|

【答案】D
【解析】解:對于A,C定義域不關(guān)于原點對稱,所以非奇非偶,故A,C不正確;
對于B,∵cos(﹣x)=cosx,∴函數(shù)是偶函數(shù),但是在區(qū)間(0,+∞)內(nèi)不是單調(diào)遞增的,故B不正確;
對于D,∵2|﹣x|=2|x| , ∴函數(shù)是偶函數(shù),由于2>1,∴函數(shù)在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的,故D正確;
故選D.
對于A,C定義域不關(guān)于原點對稱,所以非奇非偶;
對于B,函數(shù)是偶函數(shù),但是在區(qū)間(0,+∞)內(nèi)不是單調(diào)遞增的;
對于D,由2|﹣x|=2|x| , 可知函數(shù)是偶函數(shù),由于2>1,故函數(shù)在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市A,B兩所中學的學生組隊參加辯論賽,A中學推薦3名男生,2名女生,B中學推薦了3名男生,4名女生,兩校推薦的學生一起參加集訓,由于集訓后隊員的水平相當,從參加集訓的男生中隨機抽取3人,女生中隨機抽取3人組成代表隊

1求A中學至少有1名學生入選代表隊的概率.

2某場比賽前從代表隊的6名隊員中隨機抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD是正方形,AC與BD交于點O,底面ABCD,F(xiàn)為BE的中點,

(1)求證:平面ACF;

(2)求BE與平面ACE的所成角的正切值;

(3)在線段EO上是否存在點G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )

A. 6 B. 8 C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好;

②兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1;

③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;

④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關(guān)系”的把握程度越大.其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ab,c∈(0,+∞).

1)若a=6,b=5,c=4ABCBCCA,AB的長,證明:cosAQ;

2)若a,b,c分別是ABCBC,CA,AB的長,若a,bcQ時,證明:cosAQ;

3)若存在λ∈(-2,2)滿足c2=a2+b2ab,證明:a,bc可以是一個三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是幾何體的三視圖及直觀圖.

(1)試判斷線段上是否存在一點,使得平面,請說明理由;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,證明.

(2)令,若時,恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習冊答案