已知橢圓:.
(1)橢圓的短軸端點(diǎn)分別為(如圖),直線(xiàn)分別與橢圓交于兩點(diǎn),其中點(diǎn)滿(mǎn)足,且.
①證明直線(xiàn)與軸交點(diǎn)的位置與無(wú)關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線(xiàn),其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線(xiàn)的方程.
(1)①交點(diǎn)為;②;(2).
解析試題分析:(1)①本題方法很容易想到,主要考查計(jì)算推理能力,寫(xiě)出直線(xiàn)的方程,然后把直線(xiàn)方程與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),同理求得點(diǎn)坐標(biāo),從而得到直線(xiàn)的方程,令,求出,與無(wú)關(guān);②兩個(gè)三角形∆與∆有一對(duì)對(duì)頂角和,故面積用公式,表示,那么面積比就為,即,這個(gè)比例式可以轉(zhuǎn)化為點(diǎn)的橫坐標(biāo)之間(或縱坐標(biāo))的關(guān)系式,從而 求出;(2)仍采取基本方法,設(shè)的方程為,則的方程為,直線(xiàn)與圓相交于,弦的長(zhǎng)可用直角三角形法求,(弦心距,半徑,半個(gè)弦長(zhǎng)構(gòu)成一個(gè)直角三角形),的高為是直線(xiàn)與橢圓相交的弦長(zhǎng),用公式來(lái)求,再借助于基本不等式求出最大值及相應(yīng)的值,也即得出的方程.
試題解析:(1)①因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/b/153ia3.png" style="vertical-align:middle;" />,M (m,),且,
直線(xiàn)AM的斜率為k1=,直線(xiàn)BM斜率為k2=,
直線(xiàn)AM的方程為y= ,直線(xiàn)BM的方程為y=,
由得,
由得,
;
據(jù)已知,,
直線(xiàn)EF的斜率
直線(xiàn)EF的方程為 ,
令x=0,得 EF與y軸交點(diǎn)的位置與m無(wú)關(guān).
②,,,
,,,
,
整理方程得,即,
又有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點(diǎn),橢圓與拋物線(xiàn)有一個(gè)公共的焦點(diǎn),且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)是橢圓在第一象限上的任一點(diǎn),連接,過(guò)點(diǎn)作斜率為的直線(xiàn),使得與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線(xiàn)的斜率分別為,,試證明為定值,并求出這個(gè)定值;
(III)在第(Ⅱ)問(wèn)的條件下,作,設(shè)交于點(diǎn),
證明:當(dāng)點(diǎn)在橢圓上移動(dòng)時(shí),點(diǎn)在某定直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的離心率與等軸雙曲線(xiàn)的離心率互為倒數(shù),直線(xiàn)與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過(guò)點(diǎn)M分別作直線(xiàn)MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線(xiàn)的斜率分別為k1,k2,且k1+k2=2,證明:直線(xiàn)AB過(guò)定點(diǎn)(―1,―1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知的兩頂點(diǎn)坐標(biāo),,圓是的內(nèi)切圓,在邊,,上的切點(diǎn)分別為,(從圓外一點(diǎn)到圓的兩條切線(xiàn)段長(zhǎng)相等),動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)設(shè)直線(xiàn)與曲線(xiàn)的另一交點(diǎn)為,當(dāng)點(diǎn)在以線(xiàn)段為直徑的圓上時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)直線(xiàn)與雙曲線(xiàn)交于A、B,且以AB為直徑的圓過(guò)原點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:對(duì)于兩個(gè)雙曲線(xiàn),,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱(chēng),為共軛雙曲線(xiàn).現(xiàn)給出雙曲線(xiàn)和雙曲線(xiàn),其離心率分別為.
(1)寫(xiě)出的漸近線(xiàn)方程(不用證明);
(2)試判斷雙曲線(xiàn)和雙曲線(xiàn)是否為共軛雙曲線(xiàn)?請(qǐng)加以證明.
(3)求值:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線(xiàn)方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線(xiàn)的弦所在的直線(xiàn)方程;
(2)過(guò)點(diǎn)(1,1)能否作直線(xiàn)l,使l與雙曲線(xiàn)交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為橢圓上任意一點(diǎn),、為左右焦點(diǎn).如圖所示:
(1)若的中點(diǎn)為,求證;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),如果一個(gè)橢圓經(jīng)過(guò)點(diǎn)P(3,),且以點(diǎn)F(2,0)為它的一個(gè)焦點(diǎn).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過(guò)點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com