【題目】已知拋物線,其焦點到準線的距離為2.直線與拋物線交于兩點,過,分別作拋物線的切線交于點.

1)求拋物線的標準方程;

2)若,求面積的最小值.

【答案】1;(24.

【解析】

1)根據(jù)焦點到準線的距離為,即可得到拋物線的方程;

2)利用導數(shù)求出拋物線的兩條切線方程,再利用直線垂直,得到斜率相乘為,從而求得直線方程為,再利用弦長公式和點到直線的距離公式,即可得答案;

1)由題意知,拋物線焦點為:,準線方程為,

焦點到準線的距離為2,即,

所以拋物線的方程為.

2)拋物線的方程為,即,所以.

,

.

由于,所以,即.

設直線方程為,與拋物線方程聯(lián)立,得,所以.

,,,所以,即.

聯(lián)立方程,得,即.

點到直線的距離.

所以.

時,面積取得最小值4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知長方形ABCD中,AB1,∠ABD60°,現(xiàn)將長方形ABCD沿著對角線BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學家,他的應用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學的數(shù)學知識求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PAD⊥平面ABCDPAPD,E,F分別為AD,PB的中點.求證:

1EF//平面PCD;

2)平面PAB平面PCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】口袋中有大小、形狀、質(zhì)地相同的兩個白球和三個黑球.現(xiàn)有一抽獎游戲規(guī)則如下:抽獎者每次有放回的從口袋中隨機取出一個球,最多取球2n1(n)次.若取出白球的累計次數(shù)達到n1時,則終止取球且獲獎,其它情況均不獲獎.記獲獎概率為

1)求;

2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學計劃用他姓名的首字母,身份證的后4位數(shù)字(4位數(shù)字都不同)以及3個符號設置一個六位的密碼.若必選,且符號不能超過兩個,數(shù)字不能放在首位和末位,字母和數(shù)字的相對順序不變,則他可設置的密碼的種數(shù)為(

A.864B.1009C.1225D.1441

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為.

1)求拋物線的方程;

2)若過點作互相垂直的兩條直線,與拋物線交于兩點,與拋物線交于兩點,分別為弦的中點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:十萬元)存在較好的線性關系,下表記錄了該公司最近8次該產(chǎn)品的相關數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計算得到y關于x的線性回歸方程為

x(萬元)

6

7

8

11

12

14

17

21

y(十萬元)

1.2

1.5

1.7

2

2.2

2.4

2.6

2.9

1)求的值(結(jié)果精確到0.0001),并估計公司A產(chǎn)品投入成本30萬元后產(chǎn)品的銷售收入(單位:十萬元).

2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬元)與產(chǎn)品銷售收入v(單位:十萬元)也存在較好的線性關系,且v關于u的線性回歸方程為

i)估計該公司B產(chǎn)品投入成本30萬元后的毛利率(毛利率);

ii)判斷該公司A,B兩個產(chǎn)品都投入成本30萬元后,哪個產(chǎn)品的毛利率更大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x[1,e]時,fx)的最小值為_____;設gx)=[fx]2fx+a若函數(shù)gx)有6個零點,則實數(shù)a的取值范圍是_____

查看答案和解析>>

同步練習冊答案