【題目】求下列各式的值:

(1);

(2).

【答案】(1) ;(2)1.

【解析】試題分析:指數(shù)冪運(yùn)算要嚴(yán)格按照冪運(yùn)算定義和法則運(yùn)算,法則包括同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘;積的乘方等于把積中每個(gè)因數(shù)乘方,再把所得的冪相乘;對數(shù)運(yùn)算要注意利用對數(shù)運(yùn)算法則,包括積、商、冪的對數(shù)運(yùn)算法則,這些公式既要學(xué)會正用,還要學(xué)會反著用.

試題解析:

(1)原式= ==.

原式=

=

=.

點(diǎn)精指數(shù)冪運(yùn)算要嚴(yán)格按照冪運(yùn)算定義和法則運(yùn)算,指數(shù)運(yùn)算包括正整指數(shù)冪、負(fù)指數(shù)冪、零指數(shù)冪、分?jǐn)?shù)指數(shù)冪的定義,法則包括同底數(shù)冪的懲罰和除法,冪的乘方、積的乘方;對數(shù)運(yùn)算要注意利用對數(shù)運(yùn)算法則,包括積、商、冪的對數(shù)運(yùn)算法則,這些公式既要學(xué)會正用,還要學(xué)會反著用,指數(shù)對數(shù)運(yùn)算還要靈活進(jìn)行指、對互化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù), , .

(1)討論函數(shù)的單調(diào)性;

(2)若,且對任意的,總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿足,其中O為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點(diǎn)的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)ya2x+2ax-1(a>0且a≠1),當(dāng)自變量x∈[-1,1]時(shí),函數(shù)的最大值為14.試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)悉遵義市紅花崗區(qū)、匯川區(qū)2017年現(xiàn)有人口總數(shù)為110萬人,如果年自然增長率為,試解答以下問題:

(1)寫出經(jīng)過年后,遵義市人口總數(shù)(單位:萬人)關(guān)于的函數(shù)關(guān)系式;

(2)計(jì)算10年以后遵義市人口總數(shù)(精確到0.1萬人);

(3)計(jì)算經(jīng)過多少年后遵義市人口將達(dá)到150萬人(精確到1年)

(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意x∈(0,+∞),恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量,獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格在.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)保意識,某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110

(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識是否優(yōu)秀與性別有關(guān);

(2)為參加市舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案