【題目】如圖,扇形的半徑為,圓心角,點(diǎn)為弧上一點(diǎn),平面且,點(diǎn)且,∥平面.
(1)求證:平面平面;
(2)求平面和平面所成二面角的正弦值的大小.
【答案】(1)見證明;(2)
【解析】
(1)如圖,連接交于點(diǎn),連接,結(jié)合∥平面,得到∥,從而求得,根據(jù)余弦定理得,得到,得到,因?yàn)?/span>平面,所以,得到平面,再利用面面垂直的判定定理證得平面平面;
(2)由(1)的條件,得到,建立空間直角坐標(biāo)系,得到點(diǎn)的坐標(biāo),求得面的法向量,用法向量所成角的余弦值得到二面角的余弦值,再應(yīng)用同角三角函數(shù)關(guān)系式求得其正弦值,得到答案.
(1)如圖,連接交于點(diǎn),連接,
∥平面,∥,,,
,,,,
又,在中,根據(jù)余弦定理得,
,,,
又平面,,平面,
又平面,平面平面
(2)由(1)得,如圖建立空間直角坐標(biāo)系,
,,,,
,,點(diǎn)且,,
設(shè)平面的法向量為,則,即,
令,得,,,
設(shè)平面的法向量為,則,即,即,令,得,,,
設(shè)平面和平面所成二面角的大小為,
則,,
∴平面和平面所成二面角的正弦值的大小為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn).,且,則下列結(jié)論中錯(cuò)誤的是( )
A.;
B.三棱錐體積是定值;
C.二面角的平面角大小是定值;
D.與平面所成角等于與平面所成角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“辛卜生公式”給出了求幾何體體積的一種計(jì)算方法:夾在兩個(gè)平行平面之間的幾何體,如果被平行于這兩個(gè)平面的任何平面所截,截得的截面面積是截面高(不超過三次)的多項(xiàng)式函數(shù),那么這個(gè)幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線及軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個(gè)幾何體.利用辛卜生公式可求得該幾何體的體積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對(duì)恒成立,求的取值集合;
(2)在函數(shù)的圖像上取定點(diǎn),記直線AB的斜率為K,證明:存在,使恒成立;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)點(diǎn)是線段上的中點(diǎn)時(shí),求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)與的圖象有且僅有一個(gè)交點(diǎn),求的值(其中表示不超過的最大整數(shù),如.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正整數(shù)數(shù)列滿足(p,q為常數(shù)),其中為數(shù)列的前n項(xiàng)和.
(1)若,,求證:是等差數(shù)列;
(2)若數(shù)列為等差數(shù)列,求p的值;
(3)證明:的充要條件是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有限個(gè)元素組成的集合為,,集合中的元素個(gè)數(shù)記為,定義,集合的個(gè)數(shù)記為,當(dāng),稱集合具有性質(zhì).
(1)設(shè)集合具有性質(zhì),判斷集合中的三個(gè)元素是否能組成等差數(shù)列,請(qǐng)說明理由;
(2) 設(shè)正數(shù)列的前項(xiàng)和為,滿足,其中,數(shù)列中的前項(xiàng):組成的集合記作,將集合中的所有元素從小到大排序,即滿足,求;
(3) 己知集合,其中數(shù)列是等比數(shù)列,,且公比是有理數(shù),判斷集合是否具有性質(zhì),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率e滿足,右頂點(diǎn)為A,上頂點(diǎn)為B,點(diǎn)C(0,-2),過點(diǎn)C作一條與y軸不重合的直線l,直線l交橢圓E于P,Q兩點(diǎn),直線BP,BQ分別交x軸于點(diǎn)M,N;當(dāng)直線l經(jīng)過點(diǎn)A時(shí),l的斜率為.
(1)求橢圓E的方程;
(2)證明:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com