(08年長沙市模擬理)(13分)已知數(shù)列{an}的前n項和Sn滿足Sn=-1,Sn+1+2Sn=-1(),數(shù)列{bn}的通項公式為。
(1)求數(shù)列的通項公式;
(2)是否存在圓心在x軸上的圓C及互不相等的正整數(shù)n、m、k,使得三點An(bn,an),Am(bm,am),Ak(bk,ak)落在圓C上?說明理由。解析:解析:(1),
兩式相減得
又
,即數(shù)列是首項為-1,公比為-2的等比數(shù)列其通項公式是 4分
(2)不存在圓心在x軸上的圓C及互不相等的正整數(shù)n、m、k,使得三點An,Am,Ak落在圓C上。 5分
假設存在圓心在x軸上的圓C及互不相等的正整數(shù)n、m、k,使得點三點An,Am,Ak,即落在圓C上,不妨設n>m>k,設圓方程為:
x2+y2+Dx+F=0,從而9n2-24n+16+4n-1+(3n-4)D+F=0①
9m2-24m+16+4m-1+(3m+4)D+F=0,②
9k2-24k+16+4k-1+(3k-4)D+F=0,③ 7分
由①-②,②-③得:9(n+m)(n-m)-24(n-m)+(4n-1-4m-1)+3(n-m)D=0,
9(m+k)(m-k)-24(m-k)+(4m-1-4k-1)+3(m-k)D=0,
即④
,⑤
由④-⑤,得,
整理,得,
,
⑥ 9分
設函數(shù),
知函數(shù)是增函數(shù)
,與⑥式產(chǎn)生矛盾。
故不存在圓心在x軸上的圓C及互不相等的正整數(shù)n、m、k,使得三點An,Am,Ak落在圓C上。
科目:高中數(shù)學 來源: 題型:
(08年長沙市模擬理)(13分) 已知橢圓C的焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率。
(1)求橢圓的標準方程;
(2)過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M,若為定值嗎?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年長沙市模擬理)(12分)現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元,1.18萬元,1.17萬元的概率分別為;已知乙項目的利潤與產(chǎn)品價格調(diào)整有關,在每次調(diào)整中價格下降的概率為P(0<P<1),記乙項目產(chǎn)品價格在一年內(nèi)進行2次獨立調(diào)整,設乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目再投資十萬元,以0,1,2時產(chǎn)品價格在一年后的利潤是1.3萬元,1.25萬元,0.2萬元。隨機變量1,2分別表示甲、乙兩項目各投資十萬元一年后的利潤。
(1)求1,2的概率分布列和數(shù)學期望E1,E2;
(2)當E1,E2時,求P的范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com