【題目】已知二次函數f(x)=x2+bx+c有兩個零點1和﹣1.
(1)求f(x)的解析式;
(2)設g(x),試判斷函數g(x)在區(qū)間(﹣1,1)上的單調性并用定義證明;
(3)由(2)函數g(x)在區(qū)間(﹣1,1)上,若實數t滿足g(t﹣1)﹣g(﹣t)>0,求t的取值范圍.
【答案】(1)f(x)=x2﹣1;(2)見解析;(3)(0,).
【解析】
(1)由題意可得﹣1和1是方程x2+bx+c=0的兩根,運用韋達定理可得b,c,進而得到函數f(x)的解析式;
(2)函數g(x)在區(qū)間(﹣1,1)上是減函數.運用單調性的定義,注意取值、作差和變形、定符號以及下結論等;
(3)由題意結合(2)的單調性可得﹣1<t﹣1<﹣t<1,解不等式即可得到所求范圍.
(1)由題意得﹣1和1是方程x2+bx+c=0的兩根,
所以﹣1+1=﹣b,﹣1×1=c,
解得b=0,c=﹣1,
所以f(x)=x2﹣1;
(2)函數g(x)在區(qū)間(﹣1,1)上是減函數.
證明如下:設﹣1<x1<x2<1,則g(x1)﹣g(x2),
∵﹣1<x1<x2<1,
∴x2﹣x1>0,x1+1>0,x2+1>0,
可得g(x1)﹣g(x2)>0,即g(x1)>g(x2),
則函數g(x)在區(qū)間(﹣1,1)上是減函數;
(3)函數g(x)在區(qū)間(﹣1,1)上,
若實數t滿足g(t﹣1)﹣g(﹣t)>0,
即有g(t﹣1)>g(﹣t),
又由(2)函數g(x)在區(qū)間(﹣1,1)上是遞減函數,
可得﹣1<t﹣1<﹣t<1,
解得0<t.則實數t的取值范圍為(0,).
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的中心為原點O,長軸在x軸上,離心率 ,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若PQ⊥P'Q,求圓Q的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓 =1(a>b>0)的左焦點為F,離心率為 ,過點F且與x軸垂直的直線被橢圓截得的線段長為 .
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左,右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若 =8,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2lnx.
(1)求函數f(x)的單調區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(2)中所確定的s關于t的函數為s=g(t),證明:當t>e2時,有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數 (a∈R,e為自然對數的底數),若曲線y=sinx上存在點(x0 , y0)使得f(f(y0))=y0 , 則a的取值范圍是( )
A.[1,e]
B.[e﹣1﹣1,1]
C.[1,e+1]
D.[e﹣1﹣1,e+1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于直線對稱,且圓心在軸上.
(1)求的標準方程;
(2)已經動點在直線上,過點引的兩條切線、,切點分別為.
①記四邊形的面積為,求的最小值;
②證明直線恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A在y軸正半軸上,點Pn在x軸上,其橫坐標為xn , 且{xn} 是首項為1、公比為2的等比數列,記∠PnAPn+1=θn , n∈N* .
(1)若 ,求點A的坐標;
(2)若點A的坐標為(0,8 ),求θn的最大值及相應n的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com