如圖,已知正三角形底面,其中
,
(I)求證:平面
(II)求四棱的體積
(III)求與底面所成角的余弦值(文科)
求二面角的余弦值(理科)

(1)∵
平面
平面
//平面……3分
(2)
中點,連接
是正三角形

又∵平面底面
平面
平面底面
底面
……6分
(3)(文科)
底面
就是直線與底面所成角


……10分
(理科)
,連接
底面

平面
平面

就是所求二面角的一個平面角

……10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

. (本小題滿分12分)
如圖,四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,已知AB=,∠APB=∠ADB=60°

(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)求PH與平面PAD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖PA⊥平面ABCD,四邊形ABCD是矩形,E、F分別是AB,PD的中點.
(1)求證:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐S—ABC中,SA⊥底面ABC,SA=4,AB=3,DAB的中點∠ABC=90°,則
點D到面SBC的距離等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖,在四棱錐中,底面是矩形,平面,,,、分別是、的中點.
(1)證明:平面;
(2)求平面與平面夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間三條射線PA,PB,PC滿足∠APC=∠APB=60°,∠BPC=90°,則二面角B-PA-C 的度數(shù)                                                                             
A.等于90°B.是小于120°的鈍角
C.是大于等于120°小于等于135°的鈍角D.是大于135°小于等于150°的鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正的中線與中位線相交,
已知旋轉(zhuǎn)過程中的一個
圖形(不與重合).現(xiàn)給出下列四個命題:
①動點在平面上的射影在線段上;
②平面平面;                                                      
③三棱錐的體積有最大值;
④異面直線不可能垂直.其中正確的命題的序號是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、圓臺上底半徑為5cm,下底半徑為10cm,母線AB=20cm,A在上底面上,B在下底面上,從AB中點M拉一條繩子,繞圓臺側(cè)面一周到B點,則繩子最短時長為_      ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩條不同直線、,兩個不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則
②若,則平行于內(nèi)的所有直線;
③若,,則;
④若,則
⑤若,,則
其中正確命題的序號是          .(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案