【題目】已知函數(shù).

1)若過(guò)點(diǎn)的直線與曲線相切,求直線的斜率的值;

2)設(shè),若,求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)設(shè)直線的方程為,設(shè)切點(diǎn)坐標(biāo)為,根據(jù)題意可得出關(guān)于、的方程組,求出的值,進(jìn)而可得出的值;

2)根據(jù)題意知,當(dāng)時(shí),,當(dāng)時(shí),,然后求得函數(shù)的導(dǎo)數(shù),對(duì)實(shí)數(shù)的取值進(jìn)行分類(lèi)討論,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,驗(yàn)證條件“當(dāng)時(shí),,當(dāng)時(shí),”是否滿足,由此可得出實(shí)數(shù)的取值范圍.

1)因?yàn)橹本過(guò)點(diǎn),不妨設(shè)直線的方程為,由題意得,

設(shè)切點(diǎn)為,則,解得.

直線過(guò)點(diǎn),則有,解得,即直線的斜率為;

2,.

①若,則當(dāng)時(shí),,函數(shù)上單調(diào)遞減,

此時(shí),即,不合乎題意;

②若,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

i)當(dāng)時(shí),,函數(shù)上單調(diào)遞增.

,所以當(dāng)時(shí),;當(dāng)時(shí),.

于是有;

ii)當(dāng)時(shí),記,則,

當(dāng)時(shí),,所以函數(shù)上單調(diào)遞減,

此時(shí),即,不合乎題意;

iii)若,記,則,

當(dāng)時(shí),,所以函數(shù)上單調(diào)遞減,

此時(shí),即,不合乎題意.

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的右頂點(diǎn)為.左、右焦點(diǎn)分別為,過(guò)點(diǎn)且垂直于軸的直線交橢圓于點(diǎn)在第象限),直線的斜率為,與軸交于點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn)(、不與、重合),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中社團(tuán)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,若開(kāi)通“微博”的稱為“時(shí)尚族”,否則稱為“非時(shí)尚族”,通過(guò)調(diào)查分別得到如圖所示統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

完成以下問(wèn)題:

(Ⅰ)補(bǔ)全頻率分布直方圖并求n,ap的值;

(Ⅱ)從[40,50)歲年齡段的“時(shí)尚族”中采用分層抽樣法抽取18人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于點(diǎn)E,AA1AD2AB4.

1)證明:AE⊥平面ECD.

2)求直線A1C與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)的圖象有兩個(gè)不同的交點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E:,直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.

,點(diǎn)K在橢圓E上,分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;

證明:直線OM的斜率與l的斜率的乘積為定值;

若l過(guò)點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,的中點(diǎn),上一點(diǎn),且

1)求證:平面;

2)若求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實(shí)數(shù)a,b滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

同步練習(xí)冊(cè)答案