【題目】已知橢圓)的右頂點為.左、右焦點分別為,過點且垂直于軸的直線交橢圓于點在第象限),直線的斜率為,與軸交于點

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點的直線與橢圓交于、兩點(、不與、重合),若,求直線的方程.

【答案】12

【解析】

1)根據(jù)條件建立方程組進(jìn)行求解;

2)先驗證設(shè)直線的斜率不存在時是否符合題意,再設(shè)直線的斜率為,聯(lián)立方程組,根與系數(shù)的關(guān)系 ,結(jié)合,可將(或的坐標(biāo)用表示,再利用點在橢圓上,求得,從而求得的方程.

解:(1,,由題意得

解得,

因此橢圓的標(biāo)準(zhǔn)方程為

2)由,即

若直線的斜率不存在,則,,不滿足

因此直線的斜率存在,設(shè)為,

,得

恒成立

設(shè),則

,

,從而

代入橢圓方程,得

解得,即

因此直線的方程為,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中kR.

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)k∈[1,2]時,求函數(shù)在[0k]上的最大值的表達(dá)式,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,,給出以下四個命題:①為偶函數(shù);②為偶函數(shù);③的最小值為0;④有兩個零點.其中真命題的是( ).

A.②④B.①③C.①③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計值(四舍五入保留整數(shù));

(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有 的把握認(rèn)為“生產(chǎn)能手與工人所在年齡組有關(guān)”?

生產(chǎn)能手

非生產(chǎn)能手

合計

25周歲以上組

25周歲以下組

合計

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多邊形中(圖1).四邊形為長方形,為正三角形,,,現(xiàn)以為折痕將折起,使點在平面內(nèi)的射影恰好是的中點(圖2).

1)證明:平面

2)若點在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.其中,表示直線,、β表示平面,給出如下5個命題:

①若//,則//;

②若,則;

不垂直,則不可能成立;

④若,則;

,則;

其中真命題的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,以軸正半軸為極軸的極坐標(biāo)中,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點的坐標(biāo)為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若過點的直線與曲線相切,求直線的斜率的值;

2)設(shè),若,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案