【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
【答案】
【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.
(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,
可求出該四面體的高為,故四面體體積為,
因此該六面體體積是正四面體的2倍, 所以六面體體積是;
(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個面相切,
連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,
所以, 所以球的體積.
故答案為:;.
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界第一產(chǎn)糧大國,我國糧食產(chǎn)量很高,整體很安全按照14億人口計算,中國人均糧食產(chǎn)量約為950斤﹣比全球人均糧食產(chǎn)量高了約250斤.如圖是中國國家統(tǒng)計局網(wǎng)站中2010﹣2019年,我國糧食產(chǎn)量(千萬噸)與年末總?cè)丝冢ㄇf人)的條形圖,根據(jù)如圖可知在2010﹣2019年中( )
A.我國糧食年產(chǎn)量與年末總?cè)丝诰鹉赀f增
B.2011年我國糧食年產(chǎn)量的年增長率最大
C.2015年﹣2019年我國糧食年產(chǎn)量相對穩(wěn)定
D.2015年我國人均糧食年產(chǎn)量達到了最高峰
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】整數(shù)集就像一片浩瀚無邊的海洋,充滿了無盡的奧秘.古希臘數(shù)學家畢達哥拉斯發(fā)現(xiàn)220和284具有如下性質(zhì):220的所有真因數(shù)之和恰好等于284,同時284的所有真因數(shù)之和也等于220,他把具有這種性質(zhì)的兩個整數(shù)叫做一對“親和數(shù)”,“親和數(shù)”的發(fā)現(xiàn)吸引了古今中外無數(shù)數(shù)學愛好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對“親和數(shù)”,把這六個數(shù)隨機分成兩組,一組2個數(shù),另一組4個數(shù),則220和284在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的右頂點為.左、右焦點分別為,,過點且垂直于軸的直線交橢圓于點(在第象限),直線的斜率為,與軸交于點.
(1)求橢圓的標準方程;
(2)過點的直線與橢圓交于、兩點(、不與、重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若f(x)在[0,2]上是單調(diào)函數(shù),求a的值;
(2)已知對∈[1,2],f(x)≤1均成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()經(jīng)過,兩點.O為坐標原點,且的面積為.過點且斜率為k()的直線l與橢圓C有兩個不同的交點M,N,且直線,分別與y軸交于點S,T.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線l的斜率k的取值范圍;
(Ⅲ)設,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:,直線l不過原點O且不平行于坐標軸,l與E有兩個交點A,B,線段AB的中點為M.
若,點K在橢圓E上,、分別為橢圓的兩個焦點,求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點,射線OM與橢圓E交于點P,四邊形OAPB能否為平行四邊形?若能,求此時直線l斜率;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com