【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值 .
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
【答案】
(1)解:因?yàn)楹瘮?shù)f(x)=ax2+blnx,
所以 .
又函數(shù)f(x)在x=1處有極值 ,
所以 即
可得 ,b=﹣1
(2)解:由(1)可知 ,其定義域是(0,+∞),
且
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (0,1) | 1 | (1,+∞) |
f′(x) | ﹣ | 0 | + |
f(x) | ↘ | 極小值 | ↗ |
所以函數(shù)y=f(x)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞)
【解析】(1)函數(shù)f(x)=ax2+blnx在x=1處有極值 得到f(1)= ,f′(1)=0得到a、b即可;(2)找到函數(shù)的定義域,在定義域中找到符合條件的駐點(diǎn)來討論函數(shù)的增減性求出單調(diào)區(qū)間即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù), .
(I)求函數(shù)上零點(diǎn)的個(gè)數(shù);
(II)設(shè),若函數(shù)在上是增函數(shù).
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB,CD分別在兩條異面直線上,M,N分別是線段AB,CD的中點(diǎn),則MN(AC+BD)(填“>”“<”或“=”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x2﹣x﹣2)的定義域?yàn)榧螦,函數(shù) ,x∈[0,9]的值域?yàn)榧螧,
(1)求A∩B;
(2)若C={x|3x<2m﹣1},且(A∩B)C,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向量 =(1,2), =(x,1),
(1)當(dāng) +2 與2 ﹣ 平行時(shí),求x;
(2)當(dāng) +2 與2 ﹣ 垂直時(shí),求x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的定義域;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[1,2]遞減,并且最大值為1,若存在,求出a的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,是奇函數(shù)且在定義域內(nèi)單調(diào)遞減的函數(shù)是( )
A.
B.
C.y=﹣tanx
D.y=﹣x3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖13所示.
(1)求頻率分布直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)?/span>[50,70)的學(xué)生中任選2人,求此2人的成績(jī)都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且,若, 在處切線的斜率為.
(1)求函數(shù)的解析式及其單調(diào)區(qū)間;
(2)若實(shí)數(shù)滿足,且對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com