【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點(diǎn)
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

【答案】
(1)解:以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系(如圖),

設(shè)AD=a,則D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E(a, ,0)、F( , , )、P(0,0,a).

=(﹣ ,0, ), =(0,a,0),

=(﹣ ,0, )(0,a,0)=0,

∴EF⊥DC


(2)解:設(shè)G(x,0,z),則G∈平面PAD.

=(x﹣ ,﹣ ,z﹣ ),

=(x﹣ ,﹣ ,z﹣ )(a,0,0)=a(x﹣ )=0,∴x=

=(x﹣ ,﹣ ,z﹣ )(0,﹣a,a)= +a(z﹣ )=0,∴z=0.

∴G點(diǎn)坐標(biāo)為( ,0,0),即G點(diǎn)為AD的中點(diǎn)


(3)解:設(shè)平面DEF的法向量為 =(x,y,z).

得:

取x=1,則y=﹣2,z=1,

=(1,﹣2,1).

cos< , >= = = ,

∴DB與平面DEF所成角的正弦值的大小為


【解析】以DA、DC、DP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,設(shè)AD=a,可求出各點(diǎn)的坐標(biāo);(1)求出EF和CD的方向向量,根據(jù)向量垂直的充要條件,可證得 ,即EF⊥DC.(2)設(shè)G(x,0,z),根據(jù)線面垂直的性質(zhì),可得 = =0,進(jìn)而可求出x,z值,得到G點(diǎn)的位置;(3)求出平面DEF的法向量為 ,及DB的方向 的坐標(biāo),代入向量夾角公式,可得DB與平面DEF所成角的正弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)三點(diǎn)A(1,3),B(4,2),C(1,-7)的圓交y軸于M,N兩點(diǎn),則|MN|=( )
A.
B.8
C.
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù) 是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在楊輝三角形中,斜線l的上方從1按箭頭所示方向可以構(gòu)成一個(gè)“鋸齒形”的數(shù)列:1,3,3,4,6,5,10,…,記此數(shù)列的前n項(xiàng)之和為Sn , 則S21的值為(
A.66
B.153
C.295
D.361

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2﹣3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對(duì)于區(qū)間[﹣1,1]上任意兩個(gè)自變量的值x1 , x2 , 都有|f(x1)﹣f(x2)|≤4;
(3)若過(guò)點(diǎn)A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿足
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且acosB=4,bsinA=3.
(1)求tanB及邊長(zhǎng)a的值;
(2)若△ABC的面積S=9,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定建立面積為4 平方千米的三角形主題游戲樂(lè)園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設(shè)AC=x,AB=y,用x表示y,并求y的最小值;
(2)設(shè)∠ACD=θ(θ為銳角),當(dāng)AB最小時(shí),用θ表示區(qū)域CDE的面積S,并求S的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案