【題目】如圖,在楊輝三角形中,斜線l的上方從1按箭頭所示方向可以構(gòu)成一個(gè)“鋸齒形”的數(shù)列:1,3,3,4,6,5,10,…,記此數(shù)列的前n項(xiàng)之和為Sn , 則S21的值為(
A.66
B.153
C.295
D.361

【答案】D
【解析】解:從楊輝三角形的生成過程,可以得到你的這個(gè)數(shù)列的通項(xiàng)公式a(n). n為偶數(shù)時(shí),a(n)=(n+4)/2,
n為奇數(shù)時(shí),1=c20=C22 , 3=C31=C32 , 6=C42 , 10=C53=C52 , …
a(n)=Cn+3/22=(n+3)(n+1)/8.
然后求前21項(xiàng)和,偶數(shù)項(xiàng)和為75,
奇數(shù)項(xiàng)和為[(22+42+62+…+222)+2(2+4+6…+22)]/8
=[(22×4×23)+11×24]/8=286,
最后S(21)=361
故選D.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,如圖E、F分別是BB1 , CD的中點(diǎn),
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=5sin3x+5 cos3x,下列說法正確的是(
A.函數(shù)f(x)關(guān)于x= π對(duì)稱
B.函數(shù)f(x)向左平移 個(gè)單位后是奇函數(shù)
C.函數(shù)f(x)關(guān)于點(diǎn)( ,0)中心對(duì)稱
D.函數(shù)f(x)在區(qū)間[0, ]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的焦距為4 ,且橢圓C過點(diǎn)(2 ,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與y軸負(fù)半軸的交點(diǎn)為B,如果直線y=kx+1(k≠0)交橢圓C于不同的兩點(diǎn)E、F,且B,E,F(xiàn)構(gòu)成以EF為底邊,B為頂點(diǎn)的等腰三角形,判斷直線EF與圓x2+y2= 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體育場(chǎng)要建造一個(gè)長(zhǎng)方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價(jià)為a且建造池底的單價(jià)是建造池壁的1.5倍,怎樣設(shè)計(jì)水池的長(zhǎng)和寬,才能使總造價(jià)最底?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點(diǎn)
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡(jiǎn)單隨機(jī)抽樣的方法在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100


(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來了解該校大學(xué)新生的飲食習(xí)慣,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知ABCD是復(fù)平面內(nèi)的平行四邊形,并且A,B,C三點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別是3+i,﹣2i,﹣1﹣i,求D點(diǎn)對(duì)應(yīng)的復(fù)數(shù);
(2)已知復(fù)數(shù)Z1=2, =i,并且|z|=2 ,|z﹣z1|=|z﹣z2|,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩位運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示:

(1)從甲、乙兩人的這5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙的成績(jī)高的概率;
(2)試用統(tǒng)計(jì)學(xué)中的平均數(shù)、方差知識(shí)對(duì)甲、乙兩位運(yùn)動(dòng)員的測(cè)試成績(jī)進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊(cè)答案