【題目】已知在四棱錐中,,,是的中點(diǎn),是等邊三角形,平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)取的中點(diǎn)為,連結(jié),,,設(shè)交于,連結(jié).證明,,即可證平面;(2)取的中點(diǎn)為,以為空間坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系.設(shè),利用向量法求二面角的余弦值.
(1)證明:取的中點(diǎn)為,連結(jié),,,設(shè)交于,連結(jié).
因?yàn)?/span>,,
四邊形與四邊形均為菱形,
, ,,
因?yàn)?/span>為等邊三角形,為中點(diǎn),
,
因?yàn)槠矫?/span>平面,且平面平面.
平面且,
平面
因?yàn)?/span>平面,
,
因?yàn)?/span>H,分別為, 的中點(diǎn),
,
.
又因?yàn)?/span> ,
平面,
平面.
(2)取的中點(diǎn)為,以為空間坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,
,,
設(shè)平面的一法向量.
由 .令,則.
由(1)可知,平面的一個(gè)法向量,
二面角的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),().
(1)若,求在上的最小值;
(2)若對(duì)于任意的實(shí)數(shù)恒成立,求的取值范圍;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門共有4名員工, 某次活動(dòng)期間, 周六、 周日的上午、 下午各需要安排一名員工值班,若規(guī)定同一天的兩個(gè)值班崗位不能安排給同一名員工, 則該活動(dòng)值班崗位的不同安排方式共有( )
A.120種B.132種C.144種D.156種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖判斷閏年的流程圖,判斷公元1900年、公元2000年、公元2018年、公元2020年這四年中閏年的個(gè)數(shù)為(nMODm為n除以m的余數(shù))( )
A.1個(gè)B.2個(gè)
C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為
A. 2B. 3C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C是平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)C且與y軸垂直的直線與直線交于點(diǎn)M,若向量與向量垂直,其中O為坐標(biāo)原點(diǎn).
(1)求點(diǎn)C的軌跡方程E;
(2)過(guò)曲線E的焦點(diǎn)作互相垂直的兩條直線分別交曲線E于A,B,P,Q四點(diǎn),求四邊形APBQ的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,集合,,滿足.
①每個(gè)集合都恰有5個(gè)元素
②
集合中元素的最大值與最小值之和稱為集合的特征數(shù),記為,則 的值不可能為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時(shí),,求在時(shí)的解析式,并寫出在()時(shí)的解析式;
(3)對(duì)于(2)中的函數(shù),若關(guān)于x的方程恰好有20個(gè)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知設(shè)函數(shù).
(1)若,求極值;
(2)證明:當(dāng),時(shí),函數(shù)在上存在零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com